
Developing Applications
with JRun
JRun 3.0 for Windows®, UNIX™, and
Linux™
Allaire Corporation

Copyright Notice

© 2000 Allaire Corporation. All rights reserved.

This manual, as well as the software described in it, is furnished under license and may
be used or copied only in accordance with the terms of such license. The content of
this manual is furnished for informational use only, is subject to change without
notice, and should not be construed as a commitment by Allaire Corporation. Allaire
Corporation assumes no responsibility or liability for any errors or inaccuracies that
may appear in this book.

Except as permitted by such license, no part of this publication may be reproduced,
stored in a retrieval system, or transmitted in any form or by any means, electronic,
mechanical, recording, or otherwise, without the prior written permission of Allaire
Corporation.

ColdFusion is a registered trademark and Allaire, HomeSite, JRun, JRun Studio,
<CF_Anywhere>, the ColdFusion logo, the JRun logo, and the Allaire logo are
trademarks of Allaire Corporation in the USA and other countries. MacOS is a
trademark of Apple Computers Inc. Microsoft, Windows, Windows NT, Windows 95,
Microsoft Access, and FoxPro are registered trademarks of Microsoft Corporation.
Java, JavaBeans, JavaServer, JavaServer Pages, JavaScript, JDK, and Solaris are
trademarks of Sun Microsystems Inc. UNIX is a trademark of The Open Group.
PostScript is a trademark of Adobe Systems Inc. All other products or name brands are
the trademarks of their respective holders.

Part number: AA-JRDEV-RK

Contents
Preface: Welcome To JRun ..xvii

Product Features ... xviii
JRun Product Variations ... xviii
Intended Audience...xix
Developer Resources ...xix
About JRun Documentation...xx

Online documentation...xxi
Documentation conventions...xxi

Other Resources ...xxi
Contacting Allaire..xxii

Section I Introduction ... 1

Chapter 1: Introduction to JRun..3

Introducing JRun.. 4
The Benefits of server-side Java... 4

The JRun Architecture Model.. 5
JRun’s support for the three-tier model ... 6

JRun Features ... 7
Plug-in connection to Web servers ... 8
Scalability .. 8
Security.. 9
Session tracking .. 9
Monitoring utilities... 10
Development tools ... 10

Where to next? .. 11

Chapter 2: The JRun Programming Model ...13

JRun Programming Environment... 14
JRun Servers.. 15

The installed JRun servers.. 15

iv Developing Applications with JRun
Using a Java Virtual Machine with a JRun server..17
Web Servers ...18

The JRun Web server...19
Web Applications..19
Enterprise JavaBeans..21
Java Message Service ..21
Configuring JRun ..22

Using the JMC..22
Using property files ...23

Chapter 3: Using Servlets ..25

Using Java Servlets..26
Invoking servlets..26
Servlet benefits ..27
Servlets vs. CGI ..28
Creating servlets ..29
JRun support for servlets ..29

Server-Side Scripting with JRun...29
Types of server-side scripts ..30
JRun features for server-side scripts ..30

Servlets and JSP Pages ..31
HTTP requests and responses..31
Writing results back to the client ...32
Handling exceptions ...33
Maintaining page context information ...33
Working with sessions...33
Tracking an application’s context..34
Accessing configuration information ..34
Deploying an application ...35

Writing Servlets in Java...35
Writing Servlets as JSP Pages..35

Chapter 4: Introduction to EJB ..37

Overview ..38
APIs ..40
Services ..40

Bean Development..41
Lifecycle ...41
Context ...42
Transactions ..42
Persistence ...43
Messaging Support..43
Security and Authentication...43

Environment ...44
Installation Requirements..44
Directory Information ..45

Contents v
Chapter 5: Developing Web Applications ..47

Introduction to Web Applications...48
The Benefits of Web applications ..48
Using Web applications..49
Web application directory structure..50
Deployment descriptor (web.xml)...51
Application components ..52
Web applications, JRun servers, and Web servers..52
Determining the Web application classpath ..54
Sharing classes between Web applications...55
Distributed Web applications ..56

Using the Default Web Application...56
Handling a request to the default Web application..57
Using the default-app Web application ..57
Default application directory structure...58
Default Web application classpath ..58

Developing Web Applications ...58
Creating a Web application ..59
Adding Web application components...59

Deploying Web Applications ...64
Packaging an application for deployment ..64
Deploying a Web application within JRun ..64

Chapter 6: How JRun Maps Requests to Servlets...67

Servlet Mapping Fundamentals ..68
Mappings...68

Application mappings...69
Servlet mappings...70
Using the invoker servlet ..71

How JRun Serves Files ..71
Web server interaction..72
Scenarios ..72

Section II Server-Side Scripting and JSP 77

Chapter 7: Creating JSP Pages ..79

Writing JavaServer Pages..80
Introduction to JSP scripting..80
Creating your first JSP page ..81
Multiple HTML/Java blocks ...82
From JSP to Java to servlets ..83

Developing JSP Files ...84
Storing JSP pages ...84
Declaring variables..84

vi Developing Applications with JRun
Adding conditional logic to JSP pages ...85
Using expressions..86
Using JSP objects...86
Using parameters and attributes with JSP objects ...87
Performing an include ..88
Calling another JSP page...90
Buffering JSP output..92
Using a tag library ...92
Handling errors ...93
Using the JSP compilers..94

Upgrading from a Previous Release of JSP..95

Chapter 8: JSP Syntax ..97

JRun Compatibility with the JSP 1.1 Specification ...98
Basic JSP Syntax ..98

Inserting JSP template text ...98
Using white space..99
Placing start and end tags...99
Quoting attribute values ...99
Escaping characters ..99
Inserting comments ..100
Specifying a relative URL within a JSP...100

Directives...101
The page directive ...102
The include directive...105
The taglib directive..105

Scripting Elements..106
Declarations...107
Scriptlets ..107
Expressions ..108

Actions ...108
jsp:useBean ..109
jsp:setProperty...111
jsp:getProperty ..112
jsp:include..113
jsp:forward ...114
jsp:param ...114
jsp:plugin ...115

Chapter 9: JSP Page Object Reference..119

JSP Objects...120
Obtaining access to the JSP objects ...121
Using the JSP objects...121

The application Object ...122
The config Object..123
The exception Object..123
The out Object...124

Contents vii
The pageContext Object...124
The request Object..125
The response Object ...126
The session Object ..127

Chapter 10: JSP Compilation...129

The JSP Compiler ..130
Setting JSP compiler properties ...130
Bypassing JSP page compilation ..131

The JSPC Compiler ...133
JSPC compiler requirements ..134
Invoking the JSPC compiler..134

Chapter 11: JSP Examples..137

Handling a Request and Generating a Response ...138
Calling One JSP from Another..138
Tracking a Session ..140
Using the Application Object...143
Using a Tag Library...144

Chapter 12: Upgrading JSP Pages...147

Upgrading from a Previous Release ..148
Upgrading from Version 1.1 PR1 ...148

Changes to the specification ..148
Upgrading from Version 1.1 PD1...148

Additions to the specification ..148
Changes to the specification ..149
Deletions to the specification...149

Upgrading from Version 1.0...149
Additions to the specification ..149
Changes to the specification ..149

Upgrading from Version 0.92...149
Changes to the Specification..150
Removals from the specification..150
Additions to the specification ..150

Chapter 13: Using Server-Side Include Files ..151

Using Server-Side Includes (SHTML Files)...152
Servlet Tag ...152
Include Tag..153

Chapter 14: Presentation Templates ..155

Using Presentation Templates (THTML Files) ...156
Using default.template...156
Using default.definitions..157

viii Developing Applications with JRun
File Locations ..158

Chapter 15: Taglets ..161

What Are Taglets?..162
SSI taglets ...162

Loading and Using SSI Taglets ..162

Section III Developing Servlets ... 165

Chapter 16: Working with Java Servlets...167

About Servlets ...168
The Java Servlet API Version 2.2 ..168
Basic Servlet Classes and Interfaces ..169
The Servlet Lifecycle ...169
Synchronization..171

Using the synchronized keyword in the method signature...172
Using synchronized code ...172
Using the SingleThreadModel interface..173
Synchronizing the methods that access an object-scoped variable173

Servlet Chaining..174
Enabling explicit servlet chaining ..174
Enabling servlet chaining by MIME type ..175

Web Applications..175

Chapter 17: Servlet Tutorial ..177

Part 1 ..178
Part 2 ..180
Part 3 ..181

Chapter 18: Servlet API Basics...185

Types of Java Servlets..186
Servlet API Packages ...186

javax.servlet..186
javax.servlet.http ...188

Servlet API Reference Information ..190

Chapter 19: Programming with the Java Servlet API191

Coding Methods in the GenericServlet Class ...192
Overriding the service method...192
Overriding the getServletInfo, init, and destroy methods ...192
Accessing servlet, request, and application information...194

Coding Methods in the HttpServlet Class...195

Contents ix
Overriding the service method...196
Overriding the doGet method ..196
Overriding the doPost method...197
Overriding other HTTP methods ...198

Chapter 20: Servlet Examples ...199

Passing Control ...200
Passing control to another servlet..200
Passing control to a JSP page..201

Tracking a Session ..201
Accessing a Database..203

Using the JDBC-ODBC Bridge..203
Using a JDBC driver...206
Using the JRun data source service..207

Handling Cookies..209
Using the Servlet Context...210
Including Content from Other Files ..212

Using the include method ..212
Using the getResource method ..213

Chapter 21: Creating Custom Tags and Tag Libraries...............................215

About Custom Tags and Tag Libraries ..216
Coding Tag Libraries...216

Classes and interfaces ...217
How JSP developers use custom tags ..217
Coding a simple tag handler...218
Creating a TLD file...219
Interacting with attributes..221
Interacting with body content..224
Coding nested tag handlers ..227
Using a tag to create a scripting variable...229

Using Tags in JSP Pages ...234
Packaging Tag Libraries..234

Chapter 22: Servlet API Changes ..237

Servlet API Changes from 2.0 to 2.1...238
API refinements ...238
Enhanced functionality ..239

Servlet API Changes from 2.1 to 2.2...240
API refinements ...240
Web applications...241
Other enhanced functionality ..242

Section IV Developing Enterprise JavaBeans 245

x Developing Applications with JRun
Chapter 23: Directories for EJB ...247

Structure ..248
JRun Home...248
server/servername/deploy..249
docs...249
lib ..249
lib/ext ...250
server/servername/runtime ...251
server/servername/runtime/classes..251
samples ..252

Chapter 24: Properties...253

Overview ..254
Setting Server Properties ..254
Setting Container Properties..254
Setting Bean Properties ..255
Examples..255

Command Line Overrides ..255
Properties File Overrides ..256
Bean Property Overrides...257
Runtime Bean Property Overrides ...258

Summary ...259

Chapter 25: Resource Management ...261

Overview ..262
Local Home Objects..262
Instance Manager ...263

Context / Bean Instance Pools ...263
Instance State Changes...263

Database Connection Management ...263
Local Cache / Store ...264
Loaded Users and Roles ...264
AutoCall Methods ...265

Chapter 26: Developing Beans..267

Overview ..268
Writing the Bean’s Remote Interface ..268
Writing the Bean’s Home Interface ...269
Writing the Bean’s Class Implementation ..269

Entity Beans ...269
Session Beans ..272

Versioning..273
Summary ...274

Chapter 27: Bean Managed Persistence...275

Contents xi
Overview ..276
Data Source Properties...276
Bean Methods ...276

Create and Post Create..277
Load..277
Store..278
Remove...279

JRun instance.store...279
Properties ...280
Samples ..280

Chapter 28: Container Managed Persistence ..281

Overview ..282
Properties ..282
Multiple SQL Statements ...284
Bean Methods ...285

Create and Post Create..285
Store..286
Remove...287
Finders..287
findByPrimaryKey ...288

Stored Procedure Calls ...289
Developer Responsibilities With CMP ..289
CMP Summary ..289

Chapter 29: Java Messaging..291

Overview ..292
JRun messaging architecture..292

Message Components ..294
Message header fields ...294
Message properties ...295
Message body types ..296

Message Types ..296
Point-to-Point..296
Publish-Subscribe ...306

Chapter 30: Using Servlets to Access EJBs ...319

Overview ..320
Accessing EJBs through JRun...320

Login servlet...320
EJB access servlet...322

Chapter 31: Advanced Techniques ...329

Overview ..330
Transactions..330

Setting Transaction Attributes ...330

xii Developing Applications with JRun
Implicit Transaction Management ..331
Bean and Client Transaction Management ..331

Deadlocks ..333
Disabling Security ...333
Context Factories ..333

SSL ..334
Local Beans..334
Client Applications ...334

Session Scope ..334
Client Connection Definition...335

Chapter 32: Using the EJB Engine ...337

Overview ..338
Class Loading ..338
Classpath ...338
Running the EJB engine in stand-alone mode ...339
Using Third-party JDBC Drivers..339
Troubleshooting Your Setup..339

Permissions..339
Standard Extensions ...340
Server Classpath ..340
Client Setup ...340

Section V Deploying Applications .. 341

Chapter 33: Assembling and Deploying Web Applications......................343

Overview of Application Assembly and Deployment ..344
What is Web application assembly ..344
What is Web application deployment?..345
WAR files ..345

Packaging Web Applications for Deployment..346
Disabling JSP page compilation ...346
Creating a .war file...346

Deploying Web Applications ...347
Using the JMC..347
Using the command line interface ..348
Defining users and roles for authentication ...349

Chapter 34: Deploying Enterprise JavaBeans..351

Overview ..352
Supplying The Properties ...353

Bean properties ...353
Default properties ...355
Manifest ...356

Contents xiii
Deploy properties..356
Creating The Jar Files..357
Running the Deploy Tool ...357

Redeploy ..359
Including Additional Classes ...359
Using Dynamic Bean Loading ...359
The Runtime Environment ..360

Server environment...360
Client environment ...360

Chapter 35: Deploying J2EE Applications..361

Overview ..362
What is J2EE application deployment? ...362
EAR files ...362
Packaging J2EE Applications for Deployment..362

Creating an application.xml file...363
Creating an .ear file ...364

Deploying J2EE Applications ...364
Using the JMC..364
Using the command line interface ..365
Defining users and roles for security ...365

Section VI Working with JRun ... 367

Chapter 36: Monitoring Web Server Connections.....................................369

Monitoring the Web Server Connection ...370
Configuring the monitoring mechanism ..371
Configuring the monitoring output format ..371
Default monitoring formats ...373

Monitoring Properties ..375

Chapter 37: Logging ..377

Logging ..378
Logging components ..379
Logging architecture ...380
Configuring the JRun logging mechanism ..382
Types of log events ..383
Log information format ..384
Logging output to standard output and standard error...385

Examples..385
Using multiple file writers ..385
Writing a log message to an e-mail message...386

Logging Properties ..389
General properties...389

xiv Developing Applications with JRun
Threaded logger properties ..390
Dispatch logger properties ...391
File writer properties...392
E-mail writer properties..394
Screen writer properties ...395
System logging properties ..395

Chapter 38: Web Application Authentication..397

Authentication ..398
Authentication example ...398
Users, groups, and roles..400
Application authentication vs. server authentication..401
When does a server perform authentication? ...401
Configuring the JRun authentication mechanism ...401

Setting Application Authentication...402
Assigning authentication roles to Web applications..402
Setting the user validation method..407

Controlling the Server Authentication Mechanism ...410
Using the default JRun authentication mechanism ...411
Using a custom authentication mechanism with JRun ...413
Executing applications outside of JRun...414

Authentication Properties ..414
Properties in local.properties ...414
Properties in users.properties ..415

Chapter 39: JRun Instrumentation ...417

Using the Instrumentation Mechanism ...418
Example..418
Message format ...419
Using logging with instrumentation..420
Configuring ..421
Instrumenting JSP files ...424

Instrumentation Properties ...425
General properties...425
Logging properties ..426
Class and method properties ...427

Chapter 40: Debugging and Error Messaging ...429

Debugging ...430
Starting a debugger with JRun..430
Obtaining a stack trace ...430
Handling a core dump (UNIX systems only) ..432
Handling an out of memory error..433
Monitoring client/server communication ..434
Additional debugging links...438

Custom Error Messaging..439

Contents xv
Changing the default error message with connectors..439
Setting HTTP error pages using web.xml ..440
Controlling Java exception messages using web.xml...440

Using JRun with a Third-Party IDE ...441

Chapter 41: JRun Extensions ...443

Using JRun Extensions ...444
Using the global.jsa file...444

Example global.jsa file ..445
Extensions to the Servlet API ...446

The class com.allaire.jrun.servlet.JRunServletResponse ...446
JRunServletContext object..447

Chapter 42: Using JRun with ColdFusion ...449

JRun and ColdFusion..450
Using CFSERVLET ..450

Calling a Servlet from a CFML Template...450
Calling a Servlet that has Parameters and Attributes ...452

Using CFOBJECT...456
Deploy the EJB ...456
Define Java settings in the ColdFusion Administrator...456
Code a CFML file ...457

Index ..459

xvi Developing Applications with JRun

P R E F A C E
PrefaceWelcome To JRun
JRun is a complete Java application server for developing and deploying reliable,
scalable, and secure server-side J2EE applications. JRun supports the latest industry
standards for developing applications composed of Java servlets, JavaServer pages,
Enterprise JavaBeans, static content such as HTML pages, and other resources.

JRun supports the Windows 95/98/NT, UNIX, Solaris, and Linux platforms. Its open
design allows it to work with a large variety of existing Web servers, including
Apache, Microsoft Internet Information Server (IIS), Microsoft Personal Web Server
(PWS), Netscape Enterprise Server, and O’Reilly’s WebSite Pro. With JRun, you can
deploy Web sites with dynamically generated content on almost any platform.

This chapter first describes the main features of JRun, then describes the different
JRun product variations and the intended audience of this manual. This chapter also
describes various resources available for finding more information on developing
JRun applications.

Contents

• Product Features ... xviii

• JRun Product Variations ... xviii

• Intended Audience.. xix

• Developer Resources... xix

• About JRun Documentation...xx

• Other Resources .. xxi

• Contacting Allaire... xxii

xviii Developing Applications with JRun
Product Features
JRun offers the following features for building sophisticated applications:

• Supports the J2EE application standard for developing applications for the
Web.

• Supports the Enterprise JavaBeans (EJB) 1.1 specification which allow you to
develop and deploy reusable and scalable Java server components containing
your business logic. JRun’s EJB support includes transaction management,
messaging, resource management, security, distribution, state management,
and persistence.

• Supports Java servlets as defined by the Java Servlet API 2.2 specification for
developing server-side components and custom tag libraries in Java.

• Supports the JavaServer Pages (JSP) 1.1 specification for extending your HTML
pages using scripting code and user-defined tag libraries.

• Supports the Java Message Services (JMS) 1.0 specification for deploying
applications with support for distributed messaging.

• Supports the Java Transaction Server (JTA) 1.0 specification which allows
multiple application components to participate in the same transaction.

• Provides a complete solution for developing Java-based Web applications as
defined by the Java Servlet API 2.2 specification. A complete Web application
may be composed of Java servlets, JSP pages, static content such as HTML
pages, and other application resources.

• Offers a completely portable J2EE application solution. Any application that
you write using JRun on one platform can be used on any other platform using
JRun. In addition, JRun can execute an application developed for other
application servers if the application adhere to the J2EE specification.

• Provides an integrated Java-based Web server that lets you deploy Web
applications without the use of a third-party Web server. You can use this Web
server as a RAD development tool or a lightweight deployment solution.

• Provides a set of development tools that you can use to both develop JRun
applications and to administer your JRun installation.

• Provides utilities for monitoring application execution. You can use these
utilities when debugging your application, or to identify bottlenecks in
application execution as part of optimizing your code.

JRun Product Variations
JRun is available in three different versions:

• JRun Developer: Allows you to develop and test applications. JRun Developer
allows three concurrent connections for servlets and JSPs, and three
concurrent EJB connections. Free for non-commercial use but not licensed for
deployment.

Preface: Welcome To JRun xix
• JRun Professional: Allows you to develop and deploy Web applications that
utilize servlets and JSPs. JRun Professional allows an unlimited number of
concurrent connections for servlets and JSPs.

• JRun Enterprise: Allows you to develop and deploy Enterprise-class
applications. In addition to all the features of JRun Professional, JRun
Enterprise allows an unlimited number of EJB connections. In addition, JRun
Enterprise provides HTTP-based load balancing and server-level failover
services using Allaire ClusterCATS.

In addition, Allaire provides the JRun Studio visual development tool for creating JRun
applications. Studio’s intuitive GUI interface gives you all the necessary application
building tools. In addition, JRun Studio lets you create complex SQL statements to
select, insert, update or delete data from any ODBC database. You can also connect to
databases on remote servers over HTTP without complicated network configuration

JRun Studio is sold separately from JRun Developer, JRun Professional, and JRun
Enterprise.

Contact Allaire for the latest information on pricing on all version of JRun and on JRun
Studio. You can contact Allaire at the following URL:

www.allaire.com

Intended Audience
The intended audience of this manual is anyone using JRun to develop applications
consisting of Java servlets, JavaServer pages, and Enterprise JavaBeans.

Developer Resources
Allaire Corporation is committed to setting the standard for customer support in
developer education, technical support, and professional services. Our Web site is
designed to give you quick access to our entire range of online resources.

Allaire Developer Services

Resource Description

Allaire Web site

www.allaire.com

General information about Allaire products and
services.

Information on JRun

www.allaire.com/products/jrun/

Detailed product information on JRun and
related topics.

xx Developing Applications with JRun
About JRun Documentation
The JRun documentation set contains the following:

• Release Notes

• Developing Applications with JRun

• JRun Setup Guide

• JRun Samples Guide

• Using Allaire ClusterCATS (JRun Enterpise only)

Developer Community

www.allaire.com/developers

All of the resources you need to stay on the
cutting edge of JRun development, including
online discussion groups, Component
Exchange, Resource Library, technical papers,
and more.

JRun Dev Center

www.allaire.com/developer/
jrunreferencedesk/

A one-stop information resource for servlet
resources, development tips, articles,
documentation, and white papers.

Technical Support

www.allaire.com/support

Allaire offers a wide range of professional
support programs, including telephone-based
support, Web-based support, and the Allaire
Knowledge Base, which contains hundreds of
technical articles relating to all Allaire products
and describing various tips, techniques, and
workarounds. In addition, the Installation
Support System provides solutions to the most
common installation issues.

JRun Support Forum

forums.allaire.com/jrunconf

Access to experienced JRun developers through
participation in the Allaire Online Forums, where
you may post messages and read replies on
many subjects relating to JRun.

Professional Education

www.allaire.com/education

Information about classes, on-site training, and
online courses offered by Allaire.

Consulting Services

www.allaire.com/consulting

Allaire Consulting offers services targeted at the
areas of Web application development that can
most influence the success of a Web application
development effort.

Allaire Developer Services (Continued)

Resource Description

Preface: Welcome To JRun xxi
• Getting Started with JRun Studio (printed manual ships with JRun Studio)

• Using JRun Studio (HTML and PDF versions ship with JRun Studio)

• JRun Advanced Configuration Guide (available from the Allaire Web site only)

Online documentation

Allaire provides online versions of all JRun manuals as both HTML and Adobe Acrobat
files. The PDF files are included on the JRun CD. The HTML files are shipped along
with JRun Studio and take advantage of Studio’s built-in HTML search engine.

Documentation conventions

When reading these documents, note the following formatting cues:

• Code samples, filenames, and URLs are set in a monospaced font.

• Notes and tips are identified by bold type in the margin.

• Bulleted lists present options and features.

• Numbered steps indicate procedures.

• Toolbutton icons are generally shown with procedure steps.

• Menu levels are separated by the greater than (>) sign.

• Text for you to type in is set in italics.

Other Resources
You may wish to consult the following resources for more information on topics
covered in this document:

Books

• Java Servlets by Karl Moss, published by McGraw Hill, 1999, ISBN: 0071351884

• Java Servlets: By Example by Alan R. Williamson, published by Manning
Publications, 1998, ISBN: 188477766X

• Java Servlet Programming by Jason Hunter and William Crawford, published by
O'Reilly & Associates, 1998, ISBN: 156592391X

• Developing Java Servlets by James Goodwill, published by Sams, 1999, ISBN:
0672316005

• Inside Servlets: Server-Side Programming for the Java Platform by Dustin R.
Callaway, published by Addison-Wesley Pub. Co., 1999, ISBN: 0201379635

• Mastering Enterprise JavaBeans and the Java 2 Platform, Enterprise Edition by
Ed Roman, published by Wiley, ISBN: 0471332291.

xxii Developing Applications with JRun
• Enterprise JavaBeans by Richard Monson-Haefel, published by O’Reilly &
Associates, ISBN: 1565928695.

• Enterprise Javabeans: Developing Component-Based Distributed Applications
by Thomas C. Valesky, published by Addison Wesley Publishing Company,
ISBN: 0201604469.

Online Resources

• Java servlet API (http://java.sun.com/products/servlet)

• JavaServer Pages (http://java.sun.com/products/jsp)

• Enterprise JavaBeans (http://java.sun.com/products/ejb)

• JSP Resource Index (http://www.jspin.com)

• Servlet Source (http://www.servletsource.com)

• ServerPages.com (http://www.serverpages.com)

Contacting Allaire

Corporate headquarters

Allaire Corporation
One Alewife Center
Cambridge, MA 02140

Telephone: 617.761.2000
Fax: 617.761.2001

http://www.allaire.com

Technical support

Telephone support is available Monday through from Friday 8 AM to 8 PM Eastern
time (except holidays).

Toll Free: 888.939.2545 (U.S. and Canada)

Telephone: 617.761.2100 (outside U.S. and Canada)

Sales

Toll Free: 888.939.2545

Telephone: 617.761.2100
Fax: 617.761.2101

Email: sales@allaire.com
Web: http://www.allaire.com/store

Se c t i o n I
Introduction Section I
This section contains an introduction to JRun.

Contents

Introduction to JRun.. 3

The JRun Programming Model 13

Using Servlets .. 25

Introduction to EJB .. 37

Developing Web Applications 47

How JRun Maps Requests to Servlets................... 67

C H A P T E R 1
Chapter 1 Introduction to JRun
This chapter contains an overview of JRun and of the JRun architectural model. This
chapter also describes many of the features and tools of JRun that you use during
application development and deployment.

This chapter includes a description of the different types of JRun users and includes
pointers into the JRun documentation where each type of user can find additional
information.

Contents

• Introducing JRun.. 4

• The JRun Architecture Model .. 5

• JRun Features.. 7

• Where to next? .. 11

4 Developing Applications with JRun
Introducing JRun
JRun extends your Web server to allow you to develop and deploy J2EE applications
containing Java servlets, JavaServer Pages (JSP), and Enterprise JavaBeans (EJB). JRun
connects to a Web server using a plug-in mechanism unique to each Web server:
Netscape Server API (NSAPI) for Netscape, Internet Server API (ISAPI) for Microsoft
IIS, and the Plug-in API for the Apache Web Server.

If your Web server already supports Java servlets, JSP pages, or EJBs, you can still
benefit from using JRun because it is designed to use the latest industry standards,
rather than proprietary APIs.

In addition, JRun also adds support for other server-side scripting technologies. JRun
supports server-side JavaScript (including full support for ECMAScript), Server Side
Includes (SSI), and presentation templates.

The Benefits of server-side Java

Java servlets, JSP pages, and EJBs are all examples of server-side Java. That is, Java code
that executes on a Web server rather than on a Web client.

Server-side Java has many important features that make it extremely useful for
developing Web server applications, including:

• Consistent Java features: With server-side Java, you can guarantee that your
server supports the features of Java required by your application.

• Up-to-date Java technologies: As the Java standard continues to evolve, your
server-side application can immediately take advantage of new Java features
regardless of the compliance level of clients.

• Control over the Java Virtual Machine (JVM): Your server runs the JVM that you
require for your application.

Server-side Java enables you to completely realize Java’s “write once, run anywhere”
goal. The full capabilities of the language are available to you with no limitations or
restrictions. If you want to use Microsoft’s J/Direct technology or Sun’s RMI
technology, you may do so without concern for your clients’ ability to run these
applications. Because these applications run on the Web server, you may also control
the platform, the operating system, and every aspect of the environment in which your
application runs.

Java on the Web server is a true unifying solution for application development. With
complete control over your environment, you may develop on one platform and
deploy on another with confidence that your application will run properly on both
platforms.

The Benefits of using Java

Some of the most important benefits of J2EE applications are a result of being
implemented in the Java programming language. J2EE applications take advantage of

Chapter 1: Introduction to JRun 5
Java’s inherent portability and are executable on all Web servers and server platforms
supported by JRun.

Java offers a number of benefits for application programmers, including the following:

• Application portability

• Object-oriented programming

• Rich set of standard APIs

• Multithreading support

• Automatic garbage collection

Because you develop your applications in Java, you automatically receive the
additional benefits of the Java programing language.

The JRun Architecture Model
The standards for application development on the Web are based on the Java 2
platform Enterprise Edition (J2EE) specification. JRun supports the J2EE application
model and provides a runtime environment for executing J2EE applications.

One of the design features of the J2EE application architecture is support for the three-
tier application model. This model divides the functionality of a business Web site into
discrete components that can be implemented independently from each other.

The tiers of the three-tier model have the following characteristics:

• Client tier: Web clients using a browser to access the middle tier over an HTTP
connection such as the Internet. Included in this tier are any applets that
execute on the client’s machine.

• Middle tier: The business logic of a Web site. This tier contains both the
presentation logic and the business rules that define a Web site. You use JRun
to implement applications for the middle tier.

• Data tier: The Enterprise data storage containing the business data of a Web
site.

The following figure shows this three-tier model.

6 Developing Applications with JRun
This three-tier architecture offers several advantages to Web site developers:

• The tiers, or even components of the tiers, can be distributed across multiple
hardware systems to improve system scalability and performance.

• The middle tier shields clients from the complexities of accessing the
Enterprise data store.

• The Java Servlet API defines Web applications as being composed of Java
servlets, JSP pages, static content such as HTML pages, and any other
application resources. JRun enables a Web server to process Web applications.

• Enterprise JavaBeans (EJB) provide a secure, component solution that can be
reused by multiple applications to share access to Enterprise data. EJBs can be
accessed by Web applications, or Web clients can access them directly.

• The component architecture allows you to distribute application development
across your development group. For example, JSP developers are typically
concerned with information presentation rather than with implementing
business rules. Conversely, EJB developers are concerned with data access and
manipulation but not with presentation.

JRun’s support for the three-tier model

You use JRun to implement J2EE applications for the middle tier of the three-tier
model. JRun completely supports the latest industry standards for developing Web
application composed of the following:

• Java servlets: Java servlets are server-side components written in Java that let
you add custom functionality to a Web server. Servlets are ideally suited for
Web-based applications because they support the HTTP request/response
model and allow you to access the EJB components used for data access and
manipulation. For more information on creating Java servlets, see Chapter 3.

Chapter 1: Introduction to JRun 7
• JSP pages: JSP pages let you create servlets from text files containing a
combination of HTML and scripting code. When a client requests a JSP page,
the page is translated into a Java servlet. The scripting portion of a JSP page
allows you to present dynamic content back to the client. In addition, you can
access Java servlets, custom tag libraries, and EJBs from JSP pages. For more
information on creating JSP pages, see Chapter 3.

• EJBs: Enterprise JavaBeans (EJB) allow you to develop and deploy reusable Java
components containing your business logic. The EJB 1.1 specification defines a
software component model whereby server-side application logic (beans) can
be deployed using EJB-compliant application servers. JRun’s EJB support
includes transaction and object persistence as well as a security service to
control bean access. For more information on creating EJBs, see Chapter 4.

JRun allows you to combine your business logic, implemented as EJBs, with
presentation logic, implemented as Web applications, into a single J2EE application.
The Web applications use Java servlets and JSP pages to access the business logic
contained within EJBs in order to deliver dynamic content back to a Web client.

The following figure shows the components of a J2EE application:

JRun Features
Besides giving you the ability to develop and deploy J2EE applications, JRun provides
many additional features, including the following:

• “Plug-in connection to Web servers” on page 8

• “Scalability” on page 8

• “Security” on page 9

• “Session tracking” on page 9

• “Monitoring utilities” on page 10

• “Development tools” on page 10

8 Developing Applications with JRun
Plug-in connection to Web servers

In order to process J2EE applications, a Web server acts as a client that communicates
with JRun. Therefore, the server needs to establish a connection to JRun. JRun provides
native server connection modules responsible for making this connection.

A native server connection module, or connector, is compiled for the specific Web
server, hardware architecture, and operating system. For example, JRun uses NSAPI to
create the connectors for the Netscape Application Server for each possible hardware
architecture and operating system supported by JRun.

For information on configuring the connection between JRun and a Web server, see
the JRun Setup Guide.

Scalability

Scalability allows you to configure JRun to take full advantage of the processing power
of your hardware. JRun supports several different types of scalability, including the
following:

• Single server scalability: In this scenario, you tune JRun to the processing power
of a single server where the server may contain one or more CPUs. One way of
controlling the scalability is to control the number of threads that JRun
allocates for handling client requests.

JRun uses the Java threading mechanism to handle concurrent requests.
Instead of creating a new thread for each request, JRun maintains a pool of
handler threads that are ready for new requests. This pool of threads grows and
shrinks as varying demands are placed on the Web server. Optimally, the
parameters for the pool strike a balance between traffic load and the
capabilities of the Web server. For more information on controlling the JRun
threading mechanism, see the JRun Setup Guide.

• Network scalability: JRun Enterprise includes Allaire ClusterCATS. ClusterCATS
provides HTTP-based load balancing and failover services that assure high
availability for your Web server and JRun servers. ClusterCATS lets you cluster
distributed servers into a single, high-performance, highly available
environment of Web server resources.

A cluster consists of two or more Web servers located on a network. Web servers
included in a cluster operate as a single entity to provide rapid and reliable
access to resources on those Web servers. A cluster can help your clients avoid
the consequences of busy and failed servers — slow networks. With
ClusterCATS you can avoid bandwidth, latency, and congestion problems.

For more information on ClusterCATS, see the manual Using Allaire
ClusterCATS.

Chapter 1: Introduction to JRun 9
Security

Security protects Web sites from uncontrolled access. JRun supports several different
levels of security:

• JRun administration security

JRun provides a username/password based security model to control access to
the JRun Management Console (JMC) used to administer a JRun installation.
Using JMC security, a JRun administrator can define the access rights for each
developer in your organization. In this way, developers are able to modify
administration settings for a specific area of JRun but not for the entire JRun
installation.

For more information on using the JMC, see the JRun Setup Guide.

• Web application security

To address security issues involving Web applications, the Java Servlet API 2.2
specification defines an authentication mechanism to control client access to
resources within a Web application. Web application security guarantees that
only authorized Web clients have access to the resources on a Web site.

JRun supports the Java Servlet API 2.2 security. For more information on Web
application security, see Chapter 38.

• EJB security

JRun provides a configurable mechanism for implementing EJB security. Each
bean, and each bean method, can specify the users or roles allowed to access it
using an Access Control List (ACL). Every deployed bean has an associated ACL.

The type and content of user information to be verified, what comprises a role,
and how authentication occurs can all be specified. This flexibility can
accommodate existing security schemes that you may already have in place.

For more information on EJB security, see Chapter 4.

Session tracking

The HTTP protocol is stateless, meaning that by definition a Web server does not have
the ability to track a client across multiple request/responses. However, JRun supports
a session tracking mechanism using cookies that allows a Web application to store
information in order to track a client across multiple requests to a Web application.
Information is not discarded when the client jumps between pages in the Web
application; instead, this information persists for the entire user session.

JRun also supports session tracking using stateful EJBs. A stateful EJB retains client
information across multiple HTTP requests and across multiple method calls.

Here are some examples when session tracking may be useful:

• For Web sites that implement access control, tracking a client across multiple
requests means that the client does not have to relogin on every request.

10 Developing Applications with JRun
• Adding a personalized greeting to each page that displays the client’s name.

• Associating a client with a shopping cart in order to track the items that a client
wants to purchase.

The JRun session tracking mechanism can only track a client across multiple requests
to a single Web application. If you want to track client information for requests that
span multiple Web applications, you should use EJBs.

For information on configuring session tracking, see the JRun Setup Guide.

Monitoring utilities

JRun comes with several utilities for monitoring the execution of an application. You
can use these utilities to debug an application, or to identify execution bottlenecks as
part of optimizing your application.

The JRun monitoring utilities include the following:

• Logging: During application execution, JRun can output information, warning,
error, and debug messages. The JRun logging utility enables you to forward
these messages from your applications to several different destinations,
including a file, the screen, or an e-mail message. For more information on
logging, see Chapter 37.

• Instrumentation: Instrumentation allows you to record the execution time for
the methods of a servlet and for methods called from servlet methods. These
execution times can help you to identify bottlenecks in your application. For
more information on instrumentation, see Chapter 39.

• Connection status: JRun can write status information to the JRun log files
about the connection between a JRun server and a Web server. You can obtain
this status information from the connection between a JRun server and a third-
party Web server or between the JRun Web server (JWS). For more information
on connection status information, see Chapter 36.

Development tools

JRun supplies several development tools either bundled with JRun or supplied as add-
on tools purchased separately.

JRun Studio

JRun Studio is a visual development tool for creating JRun applications. This product is
sold separately from JRun. JRun Studio increases developer productivity with powerful
visual programming tools, including the following:

• Visual programming: Accelerates development with powerful two-way visual
programming tools integrated with transparent source editing.

• Advanced debugging tools: Assists in debugging JRun applications through its
advanced debugging tools.

Chapter 1: Introduction to JRun 11
• HTML design tools: Includes all the functionality of Allaire HomeSite, the
award winning HTML design tool.

• Deployment tools: Contains utilities to simplify the deployment of JRun
applications.

Studio’s intuitive GUI interface gives you all the necessary application building tools.
In addition, JRun Studio lets you create complex SQL statements to select, insert,
update or delete data from any ODBC database. You can also connect to databases on
remote servers over HTTP without complicated network configuration

JRun Management Console

The JRun management Console (JMC) is a Web-based tool that enables you to
configure JRun. You must have a Version 4.0 or later of either Netscape Navigator or
Microsoft Internet Explorer to use the JMC. The following figure shows the JMC.

Where to next?
The remaining chapters in this section provide a general introduction to JRun. These
chapter include the following:

12 Developing Applications with JRun
• Chapter 2, “The JRun Programming Model,” on page 13

• Chapter 3, “Using Servlets,” on page 25

• Chapter 4, “Introduction to EJB,” on page 37

• Chapter 5, “Developing Web Applications,” on page 47

• Chapter 6, “How JRun Maps Requests to Servlets,” on page 67

All JRun users should be familiar with the information in these chapters.

Where you go after reading the introductory chapters depends on your role in
developing and deploying JRun applications. The following roles have been identified:

• System administrator

This type of user is responsible for installing and administrating JRun, starting and
stopping JRun, and adding and removing applications. For more information, see
the JRun Setup Guide.

• JSP page developer

This person creates JSP pages that generate dynamic content returned to clients.
These JSP pages can reference Java servlets, custom tag libraries, or Java beans.
For information on developing JSP pages, see Chapter 7.

• Java servlet and tag library developer

This type of user develops servlets in Java and also develops custom tag libraries
used in JSP pages. For more information, see Chapter 16.

• EJB developer

EJB developers create reusable components used by both Java servlet and JSP
page developers. For more information on EJB development, see Chapter 23.

• Application deployer

This type of user packages JRun applications for deployment or resale. For more
information on application deployment, see Chapter 33.

• All JRun developers

All JRun developers should be familiar with common development tasks including
application monitoring, debugging, and authentication. For more information,
see Chapter 36.

C H A P T E R 2
Chapter 2 The JRun Programming Model
JRun is a complete Java application server for developing and deploying J2EE
applications. This chapter describes the JRun programming model for developing
applications and describes how the major components of JRun are integrated with
your Web server.

Contents

• JRun Programming Environment ... 14

• Web Servers... 18

• JRun Servers.. 15

• Web Applications ... 19

• Enterprise JavaBeans ... 21

• Configuring JRun.. 22

14 Developing Applications with JRun
JRun Programming Environment
JRun enables you to develop dynamic J2EE applications that include Java servlets,
JavaServer Pages (JSP), and Enterprise JavaBeans (EJB). Your applications can be
hosted either by a third-party Web server, such as IIS or Apache, or by the integrated
JRun Web Server (JWS).

JRun allows you to combine your business logic, implemented as EJBs, with
presentation logic implemented as Web applications. The Web applications use Java
servlets and JSP pages to access the business logic contained within EJBs in order to
deliver dynamic content back to a Web client.

The following figure shows a system using JRun to develop and deploy applications.

This figure shows the four main components that make up a system running JRun:

• JRun server: Provides the services necessary for a Web server to process J2EE
applications containing Java servlets, JSP pages, and EJBs. You can create
multiple JRun servers on a single system.

As part of installing and configuring JRun, you configure a connector for your
Web server to communicate with the JRun Connection Module within the
server.

• Web server: Receives a client request and delivers a response containing Web
content. This content may be static Web pages, or the content may be
dynamically generated by a Java servlet or JSP page processed by JRun. You can
connect one or more Web servers to a single JRun server, and vice versa.

Chapter 2: The JRun Programming Model 15
This figure shows example Web servers that you can use with JRun. For a
complete list of supported Web servers, see the JRun Setup Guide.

JRun also provides its own built-in Web server, the JRun Web Server (JWS). The
JWS is a fast and lightweight all-Java Web server. JRun provides this server so
that you can begin developing and testing Web applications without needing to
load or configure a third-party Web server.

• Web application: The Java Servlet API 2.2 specification defines a Web
application as being composed of Java servlets, JSP pages, static content such
as HTML pages, and any other application resources. A JRun server can support
multiple Web applications mapped to different URLs.

• EJB: JRun provides a runtime environment for EJB components. The EJB 1.0
specification defines a software component model whereby server-side
application logic (beans) can be deployed using EJB compliant application
servers.

The JRun EJB engine provides automation of middleware services including
component lifecycle, naming, transaction management, messaging, resource
management, security, distribution, state management, and persistence.

The following sections contain detailed descriptions of these components.

JRun Servers
A JRun server provides the services necessary for a Web server to process J2EE
applications containing Java servlets, JSP pages, and EJBs. The JRun server runs in its
own process outside of any Web server process. Running the JRun server in a separate
process offers several advantages: increased stability of the Web server, the ability to
bring a Web server up and down independently of JRun, the ability to modify an
application without restarting the Web server, and the ability for a single JRun server to
communicate with multiple Web servers.

A single installation of JRun supports multiple JRun servers. One reason to create
multiple servers is to isolate applications within different processes on a machine. For
example, all applications within a JRun server execute in a single process. By isolating
applications in different JRun servers, and therefore different processes, you can
prevent one application from adversely affecting another.

Another reason to execute applications within different JRun servers is that each JRun
server can implement its own user-authentication mechanism or set of
user-authentication rules. By executing applications in different JRun servers, you can
take advantage of a particular server’s authentication settings. For more information
on authentication, see Chapter 38.

The installed JRun servers

During installation, JRun creates two servers: admin and default. JRun also creates a
JWS for each JRun server. The following figure shows this configuration.

16 Developing Applications with JRun
This figure differs from the previous JRun system figure because it shows a process
view of JRun; that is, it shows the services that run within each of the JRun server
processes. As you can see, the JWS associated with each server runs within that server’s
process.

The admin server executes all of the administrative applications shipped with JRun,
including the JRun Management Console (JMC). You should not use this server for
application development.

You access the JRun Management Console application by making HTTP requests to an
application resource just as you would for any Web application. Therefore, the admin
server requires that its associated JWS be running to handle these requests. By default,
the JWS associated with admin responds to HTTP requests received over port 8000.
Requests to this port number have the following form:

http://localhost:8000/resourceName

In this example, resourceName references a servlet, JSP page, HTML page, or other
Web resource. For example, use the following URL to connect to the JRun
Management Console:

http://localhost:8000/security/login.jsp

The default JRun server provides you with the necessary services to develop, test, and
deploy Java servlets, JSP pages, EJB, and Web applications. The default server also
hosts the JRun demo application. The JWS associated with default responds to HTTP

Chapter 2: The JRun Programming Model 17
requests received over port 8100. Requests to this port number have the following
form:

http://localhost:8100/resourceName

For example, use the following URL to connect to the JRun demo application:

http://localhost:8100/demo

By default, when a JRun server starts the corresponding JWS also starts. However, the
section “Web Servers” on page 18 describes how to configure a third-party Web server
to communicate with a JRun server. In this case, you do not need the JWS to handle
requests and you can therefore disable it from starting. For information on disabling
the JRun Web server, see the JRun Setup Guide.

Caution You should only shut down or disable the JWS associated with the JRun
admin server after you have configured another Web server to connect
with it. Otherwise, you will not be able to perform JRun administration
because you will have no way of communicating with the admin server.

A JRun server only responds to requests after it is started. During JRun installation on a
Windows NT system, you can optionally configure JRun as an Windows NT service. As
a Windows NT service, JRun starts both admin and default when you start your
Windows NT system. Additionally, you can start and stop JRun using the Windows NT
Service Control Panel. If you are running on a Windows 95/98 or UNIX platform, you
must manually start each JRun server after starting your system.

For instructions on starting and stopping a JRun server, see the JRun Setup Guide.

Using a Java Virtual Machine with a JRun server

Java servlets, JSP pages, and EJBs are all examples of server-side Java. In order for a
JRun server to execute Java code, the JRun server must be loaded by a Java Virtual
Machine (JVM). The JVM translates a Java byte code into the object code for the
specific machine hosting the JRun server.

Each JRun server has a single JVM associated with it. Therefore, all servlets, JSP pages,
EJBs, and Web applications within the JRun server execute within a single JVM. The
only requirement on the JVM is that it meets the JVM Version 1.1.6 specification
(Version 1.2 if you develop EJBs), or later.

Note The Microsoft Windows version of JRun ships with a Version 1.2 JVM; so
you do not need to obtain your own. However, the UNIX versions of JRun
require that you obtain your own JVM compatible with JRun. For more
information on compatible JVMs, see the JRun Setup Guide.

JRun does not specify which vendor’s JVM that you use. For example, you can
configure JRun to be loaded by Microsoft’s JVM or by Sun’s JVM. For more information
on selecting your JVM, see the JRun Setup Guide.

18 Developing Applications with JRun
Web Servers
JRun extends a Web server to enable it to process J2EE applications that deliver
dynamic content generated by Java servlets, JSP pages, and EJBs hosted by the JRun
server. Because a Web server acts as a client that communicates with JRun, the server
needs to establish a connection to JRun. JRun provides a native server connection
module responsible for making the connection to the Web server.

A native server connection module, or connector, is compiled for the specific Web
server, hardware architecture, and operating system. For example, JRun uses NSAPI to
create the connectors for the Netscape Application Server for each possible hardware
architecture and operating system supported by JRun.

You can connect one or more Web servers to each JRun server. In a typical deployment
environment, you connect a Web server to the default server for processing your
applications. The following figure shows a single Web server connected to default.

When a request is made for an application resource, the connector on the Web server
opens a network connection to the JRun connection module residing within the JRun
server. The connection module serves as a transparent communicator and translates
the request from the connector to the JRun server. The JRun server handles the request
and sends its reply back to the connection module service.

Each JRun server listens to a different network port number for requests from a Web
server. In the example above, the default JRun server listens to port 8081. When
configuring the connection between a JRun server and a Web server, you must specify
this port number.

You can also use a second parameter to define the connection between a Web server
and a JRun server: the bind address. The bind address specifies each IP address on the
machine hosting JRun over which the JRun server can receive requests. By default, the
bind address for all JRun servers is *, meaning a JRun server will listen for requests over
all of its host’s IP addresses.

Note A bind address of * is useful for a Web server that has multiple IP
addresses and you want the JRun server to listen for requests on all IP
addresses.

Chapter 2: The JRun Programming Model 19
JRun provides several additional parameters for tuning the connection between a Web
server and a JRun server. For more information on the connection and tuning
parameters, see the JRun Setup Guide.

Note JRun includes connector source code for use with custom Web servers
and other special situations. You can find this source code, along with
basic usage instructions, in <JRun home dir>/connectors/src. For
more information, refer to the JRun Advanced Configuration Guide,
available from the Allaire Web site.

The JRun Web server

JRun provides a ready to use Java Web server that lets you begin developing Web
applications even if you do not have an existing Web server. This means your
development team can create, test, and debug servlets using the built-in JRun Web
server (JWS), then deploy them on your production server with guaranteed
compatibility.

However, the JWS is an HTTP Version 1.0 server with no built-in security. In most
cases, you will use a third-party Web server with JRun on a live Web site.

If you do choose to use the JWS on the default JRun server as your development Web
server, the document root directory is:

<JRun home dir>/servers/default/default-app

Remember, the admin server is primarily used to support the administration of JRun,
not for application development.

Web Applications
JRun is an application server that allows you to develop, package, and deploy a
complete, stand-alone Web applications. As defined by the Java Servlet API 2.2
specification, a Web application is a collection of Java servlets, JSP pages, static
content such as HTML pages, and any additional resources required by the Web
application.

Since JRun supports the Java Servlet API specification for Web applications, you can
develop a Web application using JRun and deploy that application on any other Web
application server that supports this specification.

A Web application’s configuration is defined by the contents of the web.xml file, which
is also referred to as the deployment descriptor. This file contains all information
required by an application server to execute the application. The contents of web.xml
are not specific to JRun but are defined by the Java Servlet API 2.2 specification. All
platforms that support Web applications as defined by the Java Servlet API 2.2
specification recognize and interpret the contents of a web.xml file.

A Web application has the following directory structure.

20 Developing Applications with JRun
The Web application’s root directory, approot in the figure, functions as the document
root for serving Web application files. Included in this directory are any JSP pages
developed as part of a Web application. For example, for a Web application located at
c:/myapp, the default welcome file may be located at c:/myapp/index.html.

Your Web application is not limited to the directories shown in the previous figure.
You can add additional directories to the application for such items as HTML files,
images, and other application resources. These directories constitute the public
document tree for the Web application for resources accessed directly by a client.

The subdirectories of approot may include, but are not limited to, the following
directories:

• WEB-INF: Contains resources related to the application that are not in the
application’s document root. Included in this directory is the web.xml file that
contains configuration information about the application.

Note that this directory is not part of the public document tree of the
application. That is, no file contained in this directory, or any of its
subdirectories, may be served directly to a client.

• WEB-INF/classes: Contains the Java class files for the application’s Java
servlets.

• WEB-INF/lib: Contains classes specific to the application. These files must be
contained within a Java Archive (.jar) or .zip files. Included here are also any
.jar files containing tag libraries.

• WEB-INF/jsp: Contains the files generated by JRun (.class, .java) when
translating a JSP page. Note that this directory is not part of the Web
application specification but has been added by JRun.

When you distribute a Web application, you can either distribute it as the expanded
directory structure, or you can distribute it as a single, compressed file called a Web
Archive (.war) file. A .war file contains the complete directory structure and all files
that define the application. You create a .war file using the same tools that you use to
create a .jar file.

Chapter 2: The JRun Programming Model 21
A .war file makes it easy for you to distribute an application because you only need to
distribute a single file. However, you must expand the .war file before you can execute
the Web application contained within it. The process of expanding the .war file is part
of deploying a Web application. JRun includes a deployment tool that you use for this
purpose.

For more information on distributing Web applications, creating .war files, and using
the deployment tool, see Chapter 5.

Enterprise JavaBeans
JRun provides full support for both entity and session EJBs, thereby providing you with
the ability to develop and deploy robust solutions to business needs. Being both
lightweight and customizable, you can configure the JRun EJB engine for the specific
requirements of your application. The JRun EJB implementation guarantees efficient
execution while maintaining a small footprint.

JRun’s EJB support can be installed along with JRun’s Web application support, or EJB
support can be installed in a standalone mode. In standalone mode, you can still take
advantage of all of JRun’s EJB features but without the added overhead required to
support Web applications.

The EJB engine relies on property files for setting its deploy and runtime
environments. Properties are also used to configure transactions, security, persistence
and other services. For bean properties, the EJB engine also supports properties
defined via XML-based deployment descriptors.

To run pre-built beans you need the Java 2 JRE installed. However, if you intend to
develop beans or run the EJB samples supplied with JRun, you must have JDK 1.2 or
higher installed.

You deploy EJBs as .jar files containing the bean’s implementation, home and remote
interfaces, deployment descriptor (optional), property files, and manifest to create the
home and remote object implementations. JRun supplies an EJB deployment tools
that you use to create these .jar files.

For more information on EJBs, see Chapter 4.

Java Message Service
JRun provides seamless integration of messaging support by fully implementing the
Java Message Service (JMS) 1.0 specification. Creation of producers, consumers and
JMS sessions within beans is supported. Beans can also be used as listeners for
asynchronous messaging. Messages are fully transacted using the transaction support
provided by the EJB engine’s entity bean architecture.

JRun supports both point-to-point (queue-based) and publish/subscribe (topic-
based) synchronous and asynchronous messaging. Messages can be specified as
persistent, thus ensuring that messages are not lost in a server shutdown.

22 Developing Applications with JRun
For more information on JMS, see Chapter 29.

Configuring JRun
You configure JRun either by using the JRun Management Console (JMC) or by directly
editing the JRun property files. In most cases, you perform configuration tasks through
the JMC. However, there may be times when you need to edit an individual property
file, or you may want to distribute an application without distributing the JMC. In
these cases, you must edit a property file to configure JRun.

Note Although the property files are text files and can be edited manually, we
recommend that you use the JMC to configure your system. Most of the
information in the JRun Setup Guide describes configuration through the
JMC.

Using the JMC

The JMC is a Web-based server administration console that enables you to configure
JRun. You must have a 4.0 or later Version of either Netscape Navigator or Internet
Explorer to use the JMC. The following figure shows the JMC.

Chapter 2: The JRun Programming Model 23
This window displays two panes. The left pane provides a tree view of the JMC
directory structure, starting from the root level. The right pane displays the contents of
the folder or object currently selected in the tree.

For complete instructions on using the JMC, see the JRun Setup Guide.

Using property files

JRun property files are arranged in a hierarchy where the root, or global, property file
sets the properties for all JRun servers. The following figure shows this hierarchy.

• global.properties: Defines the properties for the entire JRun installation,
properties that apply to all JRun servers, and properties for all Web
applications. You should not edit this file. This file is located in the directory
<JRun home dir>/lib.

• local.properties: Defines properties for an individual JRun server and all
Web applications executed by the server. You can edit this file directly or
through the JMC. The settings in this file override the corresponding settings in
global.properties. This file is located in the server’s root directory, for
example <JRun home dir>/servers/default for the default JRun server. If
you create a JRun server, put the local.properties file in the root directory of
the server.

• webapp.properties: Optionally defines properties for a specific Web
application. You typically edit this file through the JMC. The settings in his file
override the corresponding settings in global.properties and
local.properties. JRun only creates this file when you use the JMC to set
application-specific properties. This file is located in the document root
directory of the Web application.

24 Developing Applications with JRun
This figure also shows the web.xml file, or deployment descriptor, for each application.
You create and modify this file as part of developing your Web applications. Some
edits can be made for you by the JMC while other modifications require you to edit the
file directly. Information on the web.xml file is shown throughout this manual as
appropriate. For a complete description of web.xml syntax, see the Java Servlet API 2.2
specification.

For more information on property files, and on configuring JRun, see the JRun Setup
Guide.

C H A P T E R 3
Chapter 3 Using Servlets
This chapter introduces servlet development using both Java and JSP pages. It
highlights concepts and objects common to both environments. It also includes
sample code for a Java servlet and a JSP page as well as a summary of changes in the
Servlet API.

Contents

• Using Java Servlets ... 26

• Server-Side Scripting with JRun.. 29

• Servlets and JSP Pages.. 31

• Writing Servlets in Java .. 35

• Writing Servlets as JSP Pages ... 35

26 Developing Applications with JRun
Using Java Servlets
Java servlets are server-side components written in Java that let you add custom
functionality to a Web server. A servlet runs on a Web server and features high
performance, database connectivity, stability, and security.

Unlike CGI scripts, which are often written in C++ and Perl for a specific Web server
implementation, servlets are written in Java and therefore enjoy all the benefits of the
Java programming language, including portability, or the “write once, run anywhere”
feature of Java.

Servlets are ideally suited for Web-based applications because they support the HTTP
request/response protocol. The following figure shows the basic processing model of a
Java servlet:

As you can see in this figure, the Web server receives the HTTP request, determines
that the request references a servlet, and forwards the request to the servlet engine
which invokes the appropriate servlet. The servlet processes the request and returns a
response that the Web server then forwards back to the client.

You can use servlets to write sophisticated applications without getting bogged down
in the complexities and platform-specific behaviors of a specific Web server
implementation. The Web application’s building blocks (e.g., HTML, form data,
request headers, cookies, etc.) are all supported by the Servlet API.

Invoking servlets

A client invokes a servlet by referencing a URL, as it would any Web resource. The fact
that a URL references a servlet is transparent to the Web client.

Typically, a client invokes a servlet in one of the following ways:

• By accessing a JavaServer Page (JSP).

JSP pages are a combination of HTML and scripting code (typically written in
Java or JavaScript). The first time a client accesses a JSP file, JRun translates the
file into Java source code, compiles the source-code into a Java servlet, then
loads and executes the servlet. The Web server forwards any HTML output from
the servlet back to the Web client.

Subsequent client accesses to the JSP file are very efficient because the servlet
executable stays resident in memory. This means JRun can reference the servlet
image in memory and bypass the compile and load steps.

Chapter 3: Using Servlets 27
• By accessing a Server Side Include file (SHTML) that calls a servlet.

A Server Side Include file can call a servlet using the <servlet> tag. The
<servlet> tag supports parameter passing to the servlet.

As is the case with JSP files, once the servlet is loaded into memory, it remains
resident. Future accesses to the servlet reference the memory image.

• By directly referencing a URL that is mapped to a servlet. The servlet remains in
memory and future accesses to the servlet reference the memory image.

All of these methods are described later in this manual.

Servlet benefits

Servlets offer many benefits to Web developers over existing server-side application
development technologies. Some of these benefits are associated with the Java
programming language while others are associated with the servlet technology. This
section discusses several benefits of using servlets and Java.

The benefits of using servlets

Servlet technology offers several benefits to Web developers including the following:

• Security

Because servlets are invoked through the Web server, your business logic
cannot be directly exposed to the client. In addition, servlets are isolated from
each other so that an error in one servlet cannot corrupt any other servlet.

• Performance

One of the biggest differences between existing server-side applications, such
as CGI, and servlets is performance. A servlet is loaded once when it is called.
The servlet stays resident in memory and is not reloaded until it changes. A
modified servlet can be reloaded without restarting the Web server or
application.

In addition, servlets are multithreaded and run within the process of the servlet
server. A process context switch is not required to handle each servlet request.

• Portability

Servlets written using JRun adhere to the industry-standard servlet
specification and are portable to any other Web server that supports the servlet
standard or that uses JRun. Portability is important for servlet vendors because
it means the vendor does not need to maintain a different version of the servlet
for different Web servers and server platforms.

• Stability

Servlets execute outside the process of the Web server. Therefore, if a servlet
produces an error, only the process executing the servlet will be affected; the
Web server process is isolated and will not be affected.

• State Persistence

28 Developing Applications with JRun
Static or persistent information can be shared across multiple invocations of
the servlet, allowing you to share information between multiple users or within
a session.

The benefits of using Java

Some of the most important benefits of servlets are a result of servlets being
implemented in the Java programming language. Servlets take advantage of Java’s
inherent portability and are executable on all Web servers and server platforms
supported by JRun.

Java offers a number of benefits for application programmers, including the following:

• Application portability

• Object-oriented programming

• Simplified programming model

• Multithreading support

• Automatic garbage collecting

Because you develop your servlets using Java or JavaServer Pages, you automatically
receive the additional benefits of the Java programing language.

Servlets vs. CGI

Common Gateway Interface (CGI) was the dominant interface for extending Web
servers for years. Because CGI support was built into every Web server on the market,
CGI was a great choice for development tools and applications that could add dynamic
capabilities to a Web site. CGI languages included C, C++, and Perl, with Perl being the
dominant CGI language.

Enter Java. A networked language from the ground up, Java was written specifically to
take advantage of the Internet. With built-in support for network sockets, database
connectivity, string manipulation, and a host of other features, Java quickly became
adopted by developers all over the world as the premier development language.
Nevertheless, using Java as a CGI language was still a problem. Most solutions involved
creating a new Java Virtual Machine (JVM) for each request, resulting in poor
performance. Much like the Perl interpreter, it was necessary to create a new process
for every request to the program.

Servlets are a complete replacement for CGI. Servlets offer many added benefits to the
developer, including ease of development, fast throughput and response, inter-servlet
communications, and all of the features inherent in Java.

In addition, servlets are platform-independent and portable, whereas CGI programs
are frequently platform-dependent. A CGI script is typically written for a specific Web
server running on a specific hardware platform. Servlet portability is of primary
importance to vendors wanting to sell servlets for multiple Web servers and platforms.

One of the main problems with traditional CGI applications is performance. A new
process is created each time a CGI application is requested by the client. This behavior

Chapter 3: Using Servlets 29
can lead to performance problems at popular Web sites that handle requests from
multiple users.

Servlets, on the other hand, handle requests more efficiently. The first time that a
servlet is requested, it is loaded into the Web server’s memory space. Subsequent
client requests for the servlet result in calls to the servlet instance in memory.

Also, servlets use threading to process multiple requests simultaneously, whereas CGI
programs are not inherently multithreaded.

Creating servlets

JRun provides you with two methods for creating servlets: writing Java programs or
writing JavaServer Pages (JSP). When you write Java programs, you have full access to
the data processing capabilities and benefits of Java. Typically, you use Java to write
servlets that perform complex data manipulation such as database access.

You can also create servlets from JSP pages. JSP pages are a type of server-side
scripting that combines HTML and scripting code. JSP pages give you the ability to use
the full power of the Java programming language, but use a simple mechanism to
embed Java code within HTML code. JSP pages are often used to implement servlets
that produce HTML results returned directly to a client browser.

Both methods of servlet creation are described in this manual.

JRun support for servlets

So, why do you need JRun to work with servlets? One of the primary reasons is that not
all Web servers have implemented servlet functionality. JRun extends your Web server
to handle servlets.

Even if your Web server already has the capability to run servlets, the server’s
implementation of the servlet standard may be specific to that server or the hardware
platform hosting the server. JRun offers a completely portable servlet solution that
means any servlet you write using JRun can be used on any other Web server using
JRun or to any Web server that supports the servlet standard.

JRun also provides a ready-to-use Java Web server that lets you begin developing
servlets even if you do not have access to an existing Web server. A developer can
create, test, and debug servlets using the built-in JRun Web server, then deploy them
on your production server with guaranteed compatibility.

Server-Side Scripting with JRun
Besides offering you the ability to create servlets, one of the main features of JRun is its
support for server-side scripting. You use server-side scripting to create Web
documents containing instructions processed by a Web server before the output of the
script is sent to a client. Such server-side scripts may contain tags to perform actions

30 Developing Applications with JRun
and to add logic to a Web document. Server-side scripts provide a way to apply
dynamic content and logic to HTML-based pages, independent of the browser type.

Server-side documents are usually identified with a file extension other than html,
such as asp, cfm, shtml, thtml, or jsp. The extension tells the Web server what
particular documents need to be pre-processed before being sent out. The extension
also tells the Web server what component is responsible for processing the server-side
document.

Through JRun’s support for JavaServer Pages (JSP), you can create servlets without
writing any Java code. Your JSP pages can both call servlets and be called by other
server-side scripts.

Types of server-side scripts

JRun extends your Web server to handle several different scripting technologies,
including the following:

• JavaServer Pages (JSP)

Allaire’s implementation of the JavaServer Pages 1.1 specification. JSP lets you
create servlets from text files containing a combination of HTML and scripting
code. These files have the extension .jsp.

• JavaScript (including full support for ECMAScript)

JRun lets you use JavaScript as the scripting language of your JSP pages. This
means you can develop your JSP pages without having to use any Java code.

• Server-Side Include extensions

JRun provides extensions for Server-Side Include files that enable these files to
call servlets. These files have the extension .shtml.

• SSI Taglets

JRun’s support for SSI taglets give you the ability to define a tag that maps to a
specific servlet. You can then use these taglets in your scripts.

• Presentation templates

Presentation templates enable you to apply a constant look and feel to HTML
applications. Template files are identified by the file extension of .thtml.

All of these types of server-side scripts are described later in this manual.

JRun features for server-side scripts

JRun Server-Side Scripting fully supports all of the capabilities of page compilation as
defined by the Java Web Server and fully supports the current JavaServer Pages
specification.

Following is a list of the features of the JRun server-side scripting support:

• 100% JavaServer Pages 1.1 compatible

Chapter 3: Using Servlets 31
• Full support for the JSP <jsp:useBean> tag

• Supports extending JSP pages for true object-oriented page design

• Supports recursive dependent file compiling

• Supports presentation templates

• Support for all Java Virtual Machines (JVMs) and Java compilers

JRun also provides many examples and samples to help you develop server-side
scripting and Java servlets. In addition, you can visit Allaire’s Web site at
http://www.allaire.com/ for more examples and tutorials as they become available.

Servlets and JSP Pages
JRun enables you to create server-side Java applications through both Java servlets and
JSP pages. Because JRun translates JSP pages to servlets, many of the objects available
to native Java servlets are also available natively to JSP pages:

• HTTP requests and responses

• Output

• Exceptions

• PageContext

• Sessions

• Context (application)

• Configuration information

• Deploying applications (war files, DTDs, etc.)

These topics are introduced in the following pages. Detailed information about using
these objects is included in later sections of this manual.

HTTP requests and responses

Servlets are invoked when an HTTP request references the servlet, either directly, as a
Java servlet, or indirectly, as a JSP file. One of the most common tasks within a servlet is
accessing the information stored within the HTTP request, processing the
information, then returning results to the client as part of an HTTP response.

32 Developing Applications with JRun
HTTP requests contain any information sent to the servlet from the client. For
example, if the servlet is invoked by a form, the servlet must first access the form data
stored in the request before processing. The form data might contain login
information used to verify a user, registration information written to a database, or
information about a product added to a user’s shopping cart.

Access HTTP request information as follows:

• In a Java servlet, you access HTTP request information through the
javax.servlet.HttpServletRequest object. This object defines methods that
you can use to access the information stored within the request.

• In a JSP page, you access HTTP request information through the implicit JSP
object request. The request object enables you to use the same methods as
does the javax.servlet.HttpServletRequest object.

Servlets answer a request by constructing an HTTP response and sending that
response back to the client. Within your servlet, you access the HTTP response to write
information within the response sent back to the client.

Access HTTP response information as follows:

• In a Java servlet, you access HTTP response information through the
javax.servlet.HttpServletResponse object. This object defines methods
that you can use to access the information stored within the response.

• In a JSP page, you access HTTP response information through the implicit JSP
object response. The response object enables you to use the same methods as
does the javax.servlet.HttpServletResponse object.

The HTTP response includes an output stream that you use to send results back to the
client.

Writing results back to the client

Servlets enable you to return dynamic content to the requesting client, generating
dynamic output based on information passed to the servlet or on information that the
servlet calculates. For example, a servlet can use a passed form attribute (accessed via
the request object) to return formatted database data. Alternatively, if the application
has a method of maintaining user preferences, the servlet might set the display color of
the browser based on stored preference information.

Chapter 3: Using Servlets 33
You return information through the HTTP response, as follows:

• Servlets use the javax.servlet.HttpServletResponse object’s PrintWriter
or ServletOutputStream interfaces. These interfaces include println
methods, which allow you to write to the output stream.

• JSP pages use the implicit JSP object out. The out object also includes a
println method.

Handling exceptions

Exceptions are errors detected within your servlet. Exceptions can occur when JRun
translates a JSP page to a Java class file, or when the servlet executes.

Exceptions are represented as follows:

• In a Java servlet, an exception is represented by an instance of the class
javax.servlet.ServletException.

• In a JSP page, you reference an exception using the exception object.

Maintaining page context information

The JSP pageContext object provides a mechanism for storing information local to the
JSP page. JRun creates a new pageContext object for each page request; the object is
created when the page is invoked and destroyed when the page completes. Methods of
the pageContext object allow you to access information about the JSP page and to
perform other actions.

Java servlets have no equivalent object.

Working with sessions

HTTP is a stateless protocol. That is, a Web server receives a request, sends a response,
then terminates the connection to the client. The Web server does not maintain
information about the client; so it cannot automatically determine when another
request comes from the same client. This inability to automatically track clients and
their navigation through a Web site makes it difficult to do any complex transactions
on a Web site.

However, JRun supports a session object, which you can use to track a user over the
entire interaction with the Web server. With the session object you can track users as
they shop for items, send registration or preference information, or eliminate users
from having to re-enter information every time that they connect to your site.

A session object gives you a single location to store and retrieve information
throughout a user’s connection to your Web site.

In JRun’s implementation of sessions, the client’s browser must support cookies and
enable their use. If the browser does not support cookies, or if the client has disabled
cookies, JRun will not be able to track the session. In this case, you will need to use a
different method to track the user.

34 Developing Applications with JRun
Access session information as follows:

• In a Java servlet, access session information through the
javax.servlet.http.HttpSession object.

• In JSP pages, access session information through the implicit JSP object
session.

Tracking an application’s context

The context object enables you to store information about your application and
enables you to share information among the various components of the application.

For example, your application may consist of multiple servlets (written in Java and as
JSP pages), HTML tags, and databases. In order for the various components of the
application to communicate information, you can use the application context to store
and retrieve that information. Information available through the context object
includes the following:

• Attributes passed to the request

• Initialization parameters

• MIME type

• Version information

• Path information

An application context also stores information about the application as it is
implemented on the Web server. This information includes the file location of the
components of the application, servlet initialization parameters, version information
about the application, and other application-specific information.

You can access application information as follows:

• In a Java servlet, through the javax.servlet.ServletContext object

• In a JSP page, through the implicit JSP object application.

Accessing configuration information

JRun passes configuration information to a servlet when it is initialized. This
configuration information includes name/value pairs, which describe initialization
parameters, and the ServletContext object, which describes the context within which
the servlet is running.

Access configuration information as follows:

• In a Java servlet, access configuration information through the
javax.servlet.ServletConfig object

• In a JSP page, access configuration information through the implicit JSP object
config.

Chapter 3: Using Servlets 35
Deploying an application

JRun enables you to deploy Web applications containing servlets. JRun supports the
deployment of applications from Web ARchive (WAR) files, which are a compressed
form of application distribution that contains all the files that make up the application
and the directory structure of those files. For more information on packaging and
deployment of Web applications, see Chapter 33.

Writing Servlets in Java
What does a Java servlet look like? The following code example shows the complete
source code for a functioning servlet.

import java.io.*;
import javax.servlet.*;

public class SimpleServlet extends HttpServlet
{

public void doGet(ServletRequest request, ServletResponse response)
throws IOException, ServletException {

response.setContentType("text/html");
PrintWriter out = response.getWriter();
out.println("<html><head><title> SimpleServlet Output ");
out.println("</title></head><body>");
out.println("<h1> SimpleServlet Output </h1>");
out.println("</body></html>");

}
}

You must compile servlets before they can be tested or deployed. This is in contrast to
JSP pages, which JRun compiles automatically.

When requested, this servlet outputs text containing HTML tags back to the client.
Although this servlet is relatively simple, it does illustrate the basic form and structure
of a Java servlet.

This example is not described in detail. Chapter 17 contains several tutorial exercises
in writing Java servlets and describes servlets in much greater detail.

Writing Servlets as JSP Pages
The previous section shows an example of a servlet written in Java. JRun supports a
second method for developing servlets that relies much less heavily on Java coding:
JavaServer Pages (JSP). JSP lets you create servlets from text files containing a
combination of HTML and scripting code.

The scripting code within a JSP page is a combination of JSP syntax and, typically,
JavaScript (a subset of ECMAScript) or Java. For more information on JSP syntax and
on choosing your scripting language, see Chapter 7 and Chapter 8.

36 Developing Applications with JRun
When a JSP file is requested for the first time, JRun translates the JSP file into a Java
source file and then compiles the file into a Java class file. So, you can create actual
Java servlets without ever needing to write a line of Java code. Because the run-time
image of a JSP file is a Java class file, the Web server cannot tell the difference between
a file created in Java and one created as a JSP page.

JSP files can also call other servlets written in Java or implemented as JSP files.

The following example shows a simple JSP page that writes “Hello World” to the
browser screen five times:

<html>
<head>
<title>Greetings</title>
</head>
<body>

<% for(int i=0;i<5;i++) { %>
<h1>Hello World!</h1>
<% } %>

</body>
</html>

A JSP filename ends in the extension .jsp. JRun recognizes requests for JSP pages and
translates the JSP page into a Java servlet for execution. For more information on
developing JSP pages, see Chapter 7.

C H A P T E R 4
Chapter 4 Introduction to EJB
This chapter briefly describes the features of the JRun EJB engine. These features are
discussed in detail in Section IV.

Contents

• Overview ... 38

• APIs.. 40

• Services ... 40

• Environment... 44

• Installation Requirements ... 44

• Directory Information ... 45

38 Developing Applications with JRun
Overview
The EJB engine provides automation of middleware services including component
lifecycle, naming, transaction management, messaging, resource management,
security, distribution, state management, and persistence.

Note EJB functionality is not available with JRun Professional.

JRun implements the Enterprise JavaBeans (EJB) component architecture. EJB defines
a software component model whereby server-side application logic (beans) can be
deployed using EJB compliant application servers.

Beans from several “applications” are customarily deployed in the same server.

.

This scenario works fine if all beans are developed in-house and there is total control
over resources. However, for those wishing to provide a solution that will not be
effected by other, possibly conflicting beans deployed in the same server and possibly
in the same container, this scenario is very difficult to support.

Whereas the conventional EJB scenario defines a solution in which many different
applications are served from the same server, with JRun the EJB server can operate
invisibly within an application.

JRun allows you to provide end-to-end solutions while taking full advantage of the EJB
paradigm.

This configuration gives you total control over resource management and server
configuration.

e-commerceAccounting

Inventory

EJB server

Standard Server Configuration

Inventory

Ejipt

Ejipt

Ejipt

e-commerce

Accounting

Embedding Ejipt

Chapter 4: Introduction to EJB 39
JRun provides an open API for managing and controlling the server from within an
application. The EJB-based API allows for the customization of many features,
including security and authentication, administration, and monitoring.

High-speed performance is achieved through server-resident data sharing, entity-
based caching, and in-process and embedded operation. Scalability is ensured with
automatic distributed garbage collection of entity objects, scalable EJB object/stub
architecture, and port-multiplexed EJB object access.

Being both lightweight and customizable, The EJB engine can be easily configured for
an installation’s specific requirements. The J2EE-based implementation guarantees
efficient execution while maintaining a small footprint.

Usage modes include stand-alone and failover. The EJB engine can also be directly
instantiated or subclassed. The various usage modes, along with a standards-centric
architecture and a footprint of less than 300Kb, make JRun an ideal choice for
embedding in specialized application servers or distributed solutions.

The support needed to deploy and manage distributed Java applications is provided
through a full implementation of the EJB Specification including:

• Entity and session bean support

• Container managed persistence

• Distributed 2-phase commit transaction management

• Synchronous and asynchronous messaging

• Servlet support

• Authentication and security

• Efficient object caching

Designed to leverage the capabilities of J2EE, The EJB engine provides a robust feature
set, including:

• Failover and recovery through remote activation

• Secure connections (SSL) on the bean level

• X.509 certificate support for authentication

• ACL-based customizable user security

• Java security policies for beans

• Sealed bean implementation jars

• Distributed object management through reference objects

• Full support for J2EE collections

These features provide a secure and stable environment for deploying distributed
applications.

40 Developing Applications with JRun
APIs
The JRun EJB engine is based on standard Java APIs, including EJB, JNDI, JTA, JDBC,
and RMI. The following table outlines how each of these APIs is used.

Services
JRun provides services for managing instances of deployed beans, as well as the
resources used by those instances. The services include deployment, lifecycle
management, running context, distributed 2-phase commit transaction management,
persistence and security.

There are two types of beans — entity beans and session beans:

• Entity beans represent business objects, are available simultaneously to
multiple clients, and persist beyond a particular client session. A customer
order or bank account would be represented as entity beans. Entity beans are
always associated with a unique identifier, the bean’s primary key. Clients
locate entity beans using their primary keys.

• Session beans last only for a particular client session. Since there are no
primary keys associated with session beans, generally they are not accessed by
more than one client. A mortgage calculator would be an example of session
beans. Session beans can be used to access and modify data in a database.

Java APIs

API Usage

Enterprise JavaBeans (EJB) Full support for session and entity beans. Bean and
container managed persistence. Highly customizable
compact implementation.

Java Naming Directory Interface
(JNDI)

Server resources accessible through JNDI. Efficient
local context lookups. LDAP directory support.

Java Message Service (JMS) Provides both point-to-point and Publish/Subscribe
asynchronous messaging mechanisms.

Java Transaction API (JTA) Integrated transaction manager. Implicit or client
demarcated transactions. Bean-level transaction
granularity. Automatic recovery.

Java Database Connectivity
(JDBC)

Standard SQL database access. Multi-database
support. Support for JNDI data sources. Efficient
connection pooling. Prepared statement caching.

Remote Method Invocation
(RMI)

Full support for Java objects. Distributed object
management. Custom socket (SSL) support. Automatic
stub downloading.

Chapter 4: Introduction to EJB 41
Bean Development

An enterprise bean developer codes beans containing business logic. These beans can
be any combination of session and entity beans. The bean writer is responsible for
providing the following:

• The bean’s home interface.

• The bean’s remote interface.

• The bean’s implementation containing the business logic.

• Associated deployment properties.

The bean and its interfaces can be developed using any Java-based development
environment.

The bean developer is also responsible for providing deployment information about
the bean. You can specify deployment information through standard Java properties
and (for bean properties) through an XML descriptor. There are a number of required
and optional properties that can be set for a bean. The EjiptProperties API
documentation, provided with the JRun JavaDocs files, contains a complete list of
these properties.

Lifecycle

The EJB engine manages the lifecycle of a deployed bean. It creates, locates, and
destroys instances of beans through implementations of a bean’s associated home and
remote interfaces (objects).

At startup, the EJB engine registers beans through JNDI, thus enabling a client to
retrieve references to a bean’s home object. Once a client has a reference to the home
object, it can call the create or findXXX methods on it to retrieve references to the
bean’s objects. The client then calls methods on these objects. An object’s
implementation is responsible for forwarding these method calls to the actual bean
implementation.

42 Developing Applications with JRun
Clients have access only to a bean’s home and remote objects. They can never directly
call methods on the bean implementation (instance).

Context

Every instance of a deployed bean has a bean context associated with it. The bean’s
context provides the bean instance with the means for accessing its environment. This
includes caller identity, environment properties, references to the bean’s home and
remote objects, as well as transaction information.

A context will remain attached to a particular instance of a deployed bean for the
instance’s lifetime.

Transactions

JRun ensures the integrity of any unit of possibly distributed work through 2-phase
commit transaction management using the JTA interfaces. A bean may define a unit of
work as anything from a single method call to multiple method calls involving multiple
participants.

A bean can control transactions itself or it can delegate transaction management to the
EJB engine through declarations in the properties files. In the latter case, the EJB
engine automatically begins and commits transactions on behalf of the bean.

Full implementation of the distributed, 2-phase commit transaction protocol is
provided. However, when no distribution is required and a transaction has only one

bean

container

client context

home

object

remote interfaces

server

provided by the bean developer

Chapter 4: Introduction to EJB 43
participant, transaction support switches automatically to a highly efficient, local
execution mode.

Persistence

JRun provides both bean managed persistence (BMP) and container managed
persistence (CMP). Properties define the parameters for container managed
persistence, allowing for the precise configuration and control of CMP. The EJB engine
relies on the JDBC API for managing object persistence.

Database resources are managed through a predetermined number of database
connections in configurable pools. Connections are retrieved from the pool as needed.
After a transaction completes, the associated connection is automatically returned to
the pool, where it can be reused in subsequent calls.

Results are cached during data retrieval, thereby minimizing I/O and maximizing
performance.

A file-based, extensible instance.store is also available that can be used in
conjunction with either bean or container managed persistence. The instance.store
is provided for use when a database is not available or is not desirable.

Messaging Support

JRun provides seamless integration of messaging support by fully implementing the
Java Message Service (JMS) specification. Creation of producers, consumers and JMS
sessions within beans is supported. Beans can also be used as listeners for
asynchronous messaging. Messages are fully transacted using the transaction support
provided by the EJB engine’s entity bean architecture.

Security and Authentication

JRun provides a highly configurable mechanism for implementing security. The type
and content of user information to be verified, what comprises a role, and how
authentication occurs can all be specified. This flexibility can accommodate existing
security schemes in place in legacy systems.

User Authentication

The concepts of users and roles are implemented through entity beans. A user bean
can represent a specific person with detailed information such as email address,
phone, department, etc. A user bean can also represent a job category or type. Role
beans represent groups of users; for example a job category, location or other role.

The java.security.Principal is the base interface for implementing the underlying
user, while java.security.acl.Group is the base interface for implementing roles.
Default implementations of both users and roles are included with the server. These
classes can be extended to implement a specific authentication scheme.

44 Developing Applications with JRun
Users and roles may be stored in an existing database, a flat file or even in the
ejipt.properties file. Since a user or role is an entity bean, either bean managed
persistence or container managed persistence can be used for data retrieval and
updates.

Access Control

It is simple to specify access control for beans and their methods at either the user or
role level. Each bean can specify users or roles that are allowed to access it. Access to
specific methods can also be controlled in this manner.

A bean’s properties file or deployment descriptor includes access control entries that
are used by the EJB engine to manage runtime security. These entries are used to
create an Access Control List (ACL) at deployment. The ACL contains entries of users
and/or roles. An entry can apply to the entire bean or specific methods within the
bean. Every deployed bean has an associated ACL.

Security checking is performed on each method call to verify users and/or roles to the
defined permissions in the ACL. The role tree is traversed to determine if a user is
within a particular role.

Overriding Identity

A bean’s properties file or deployment descriptor can specify a run-as identity for a
specific method. The run-as-mode specifies the type of identity to use. The identity
type can be specified as the identity of the client, system administrator, or that of a
specified user.

In the case of a specified user, the run-as-identity property specifies the actual identity
to use and therefore must be set to a valid user or role instance.

Environment
There are no dependencies on third-party tools with JRun. You can deploy beans
developed using any standard IDE.

At deployment, the classes that implement the deployed bean’s home and remote
interfaces are automatically generated by the Deploy tool. The Deploy tool must have
access to a compiler in order to compile these generated object classes. Objects
generated on one server can then be loaded by a different server.

Installation Requirements
Having been written entirely in Java, JRun will run in any environment where the J2EE
Platform is available. The JRun EJB engine uses J2EE features extensively. To run pre-
built beans you will need to have the J2EE JRE installed. However, if you intend to do
bean development or run the samples you must have JDK 1.2 or higher installed.

Chapter 4: Introduction to EJB 45
Directory Information
Throughout the documentation you will see references to JRUN_HOME, this refers to the
full directory path where JRun was installed. For a description of the complete
directory structure, see Chapter 23.

If you are reinstalling, it is recommended that you rename the existing directory if it
contains files you would like to keep. The installer will overwrite files with the same
name in the JRUN_HOME directory. However, the contents of the deploy and runtime
directories are always left intact; they are not deleted or overwritten.

46 Developing Applications with JRun

C H A P T E R 5
Chapter 5 Developing Web Applications
A complete Web application may be composed of Java servlets, JSP pages, static
content such as HTML pages, and any other application resources. A JRun server can
support multiple applications mapped to different URLs.

This chapter first describes the structure of a Web application then describes how
JRun processes a Web application and the resources within a Web application. This
chapter next describes a special Web application called the default application.
Finally, this chapter describes how to create and deploy a Web application.

Contents

• Introduction to Web Applications .. 48

• Using the Default Web Application .. 56

• Developing Web Applications ... 58

• Deploying Web Applications ... 64

48 Developing Applications with JRun
Introduction to Web Applications
A Web application consists of servlets, JSP documents, HTML documents, images, and
other resources. You place these resources according to a predefined directory
structure, such that they can be deployed to any Web application server.

This section describes the important features and benefits of Web applications. This
section includes the following sections:

• “The Benefits of Web applications” on page 48

• “Using Web applications” on page 49

• “Web application directory structure” on page 50

• “Deployment descriptor (web.xml)” on page 51

• “Application components” on page 52

• “Web applications, JRun servers, and Web servers” on page 52

• “Determining the Web application classpath” on page 54

• “Sharing classes between Web applications” on page 55

• “Distributed Web applications” on page 56

The Benefits of Web applications

The Java Servlet API Specification, Version 2.2, defines Web applications. Defining
Web applications as part of the Java Servlet API specification offers several advantages,
including:

• Standard definition for Web application representation, including the
application’s directory structure and other information required to define the
application.

• Standard definition for Web application deployment onto a Web application
server. A Web application written for one Web application server is guaranteed
to be portable to any other Web application server that adheres to the Java
Servlet API Version 2.2 specification.

• Compatibility with the Java programming language’s “write once, run
anywhere” goal. That is, the Java language itself is defined to be portable across
platforms. With a standardized Web application representation, you now have
an application structure designed for portability across application servers.

• Relative links to reference application resources within the application. Since
Web application do not use absolute references, the location of an application
on an application server is not important. Therefore, you can deploy a Web
application in a different directory or URL, or on a different server, than where
it was developed.

Chapter 5: Developing Web Applications 49
Using Web applications

A single JRun server supports multiple Web applications. The following figure shows
two JRun servers hosting multiple Web applications.

Web applications can reference resources in other applications and share common
resources. Sharing allows Web applications access to resources, such as EJBs and
database driver classes, commonly used by many applications.

Web applications can also share data using a database or an Enterprise JavaBean (EJB).
For example, an e-commerce Web site may consist of several applications. Customers
on this type of site can be identified by a login name and password. Each Web
application then uses the login name to access information in a database about a user
such as a shopping cart, payment history, and address.

One of the questions that you must answer when developing Web applications is
where to draw a boundary between applications on multiple JRun servers. That is, can
a single JRun server host all applications, or must you spread your applications across
multiple JRun servers?

One reason to create multiple JRun servers is to isolate applications within different
processes on a machine. For example, all Java servlets, JSP pages, and applications
within a JRun server execute in a single process. By isolating applications in different
JRun servers, and therefore different processes, you can prevent one application from

50 Developing Applications with JRun
adversely affecting another. Additionally, you can define classpaths, data sources, and
EJBs at the server level.

Another reason to execute Web applications within different JRun servers is that each
JRun server can implement its own user-authentication mechanism or set of
user-authentication rules. By executing applications in different JRun servers, you can
take advantage of a particular server’s authentication settings. For more information
on authentication, see Chapter 38.

Web application directory structure

A Web application has the following directory structure.

The application’s root directory, approot in the figure, functions as the document root
for serving application files. Included in this directory are any JSP pages developed as
part of a Web application. For example, for a Web application located at
c:/apps/app1, the default welcome file could be located at
c:/apps/app1/index.html.

The subdirectories of the directory root may include, but are not limited to, the
following directories:

• WEB-INF: Contains resources related to the application. Included in this
directory is the web.xml file that contains configuration information about the
application.

Note that this directory is not part of the public document tree of the
application. That is, no file contained in this directory, or any of its
subdirectories, may be served directly to a client. For example, .jar files
containing applets must be located in a directory accessible by the client and,
therefore, would not be stored under WEB-INF.

• WEB-INF/classes: Contains the Java class files for the application’s Java
servlets.

• WEB-INF/lib: Contains classes specific to the application. These files must be
contained within a Java ARchive (.jar) or .zip files. Included here are also
any .jar files containing tag libraries.

Chapter 5: Developing Web Applications 51
• WEB-INF/jsp: Contains the files generated by JRun (.class, .java) when
translating a JSP page. Note that this directory is not part of the Web
application specification but has been added by JRun.

Your Web application is not limited to the directories shown in the previous figure.
You can add additional directories to the application for such items as HTML files,
images, and other application resources. These directories constitute the public
document tree for the Web application for resources accessed directly by a client. For
more information on adding directories to the application, see “Adding directories” on
page 60.

In addition to the directories listed above, a JRun server provides a temporary
directory for each Web application that it hosts. This temporary directory is not used
by JRun but is provided so that a Java servlet or JSP page can obtain temporary space at
run time. For example, you can use this directory to cache results of a database query.

JRun automatically creates a temporary directory for each Web application using the
following naming convention:

server_name/tmp/app_name

In this case, server_name is the directory name of a JRun server and app_name is the
name of a directory corresponding to the name of a Web application hosted by the
server. At runtime, you can obtain a reference to this directory from within a servlet
using the following statement:

File f = (File) getServletContext().getAttribute("javax.servlet.context.tempdir");

Deployment descriptor (web.xml)

A Web application is defined by the contents of the web.xml file, which is also referred
to as the deployment descriptor. This file contains all information required by the
application for execution on an application server. The contents of web.xml are not
specific to JRun but are defined by the Java Servlet Specification, Version 2.2. All
platforms that support Web applications as defined by the Java Servlet Specification,
Version 2.2, recognize and interpret the contents of a web.xml file.

You use the web.xml file to define the following types of configuration and deployment
information for a Web application:

• Servlet initialization parameters

• Session configuration

• Servlet and JSP definitions

• Servlet and JSP URL mappings

• Mime-type mappings

• Welcome file list

• Error pages

• Security information

52 Developing Applications with JRun
In addition to containing information about a Web application, a web.xml file can also
contain information about Enterprise JavaBeans (EJB). This information includes the
settings needed to allow a servlet to locate the home interfaces of an EJB.

The web.xml file is an XML file that you edit using a standard text editor or an XML
editor. In addition, you can use the JRun Management Console (JMC) to modify many
of the attributes of this file. Individual settings for the web.xml file are described
throughout this document where appropriate. For a complete list of all properties
within the web.xml file, see the Java Servlet API 2.2 specification.

Application components

A Web application may consists of the following components:

• HTML pages

• Java servlets

• JSP pages

• Custom tag libraries

• Other resources such as image directories, beans, and class files for resources
such as database drivers

To add a resource to an application, place the resource in the appropriate directory of
the Web application. For more information on adding each of these different resources
to a Web application, see “Adding Web application components” on page 59.

Web applications, JRun servers, and Web servers

Web applications are hosted by an application server such as JRun. One of the first
tasks when developing a Web application is to associate the application with a
particular JRun server. In most cases, you will either associate a Web application with
the default JRun server or with a JRun server that you create.

Note You should not associate a Web application with the JRun admin server
because it is used primarily to administer your JRun installation,
including all JRun servers.

The following figure shows an example of the JRun default server hosting several
applications.

Chapter 5: Developing Web Applications 53
This figure also shows the Web server associated with the JRun server. The Web server
receives a client request in the form of a URL and passes that request to JRun when the
request references a Web application resource, including a Java servlet or JSP page.

To assign client requests to the different Web applications hosted by a JRun server, you
map each Web application to respond to a different URL pattern. In this way, the JRun
server can forward the request to the appropriate Web application.

Application mappings

Application mappings associate a request URL with the physical directory that
contains the application. As part of deploying a Web application, you must specify the
URL path to the application as recognized by the Web server.

You set up a URL mapping so that the Web application responds to a URL in the form
http://hostname/appURL/resourcename. Once you have set up this mapping, all
URLs beginning with the prefix http://hostname/appURL/ are mapped to the
application.

Note JRun imposes no restriction on the URL mapping for an application. That
is, you do not have to use the application’s name as part of the URL
mapping but can map them to arbitrary strings.

For example, the following table lists the physical location of the Web application, the
application URL mapping, and the request URL for an application resource:

Web Application Mappings

Directory of
Web Application

Application
URL Mapping

Client Request URL

c:/apps/app1 /app1 http://hostname/app1/resource_name

c:/apps/app2 /app2 http://hostname/app2/resource_name

54 Developing Applications with JRun
In this example, you create a directory named c:/apps to hold all of your Web
applications. You then set up application URL mappings in JRun so that request URLs
are mapped to either app1 or app2.

For a complete description of how JRun resolves a request URL to a specific resource,
see Chapter 6

Determining the Web application classpath

A Web application’s classpath defines the classes that the application can access. For
example, a Java servlet’s .class file must be in a directory included in a Web
application’s classpath for JRun to be able to process the servlet. The classpath may
contain directories, or .jar files containing .class files.

The classpath definition for a Web application is divided into two portions: the
reloadable portion of the classpath and the nonreloadable portion. Reloadable classes
include JSP pages and Java servlets. At runtime, classes defined by the reloadable
portion of the classpath are checked by JRun. If the image of the class in memory is
different from the image on disk, the class is reloaded.

Classes referenced by the nonreloadable portion of an application’s classpath are
loaded once and are not checked for modification. Nonreloadable classes are typically
the basic Java classes, JRun files, JVM classes, and other classes that you do not modify
as part of developing a Web application.

The default reloadable classpath for a Web application includes the following
directories:

• approot/WEB-INF/classes

• approot/WEB-INF/lib

• approot/WEB-INF/jsp

The default nonreloadable classpath includes the following directories and files:

• <JRun home dir>/lib/ext: Includes all .jar files in this directory

• <JRun home dir>/servers/lib: Includes all .jar files in this directory

• <JRun home dir>/lib/jrun.jar

• <JRun home dir>/lib/install.jar

• <JRun server root dir>/lib: Includes all .jar files in this directory

• Additional JRun .jar files

Modifying a Web application’s classpath

You modify the classpath of a Web application, both the reloadable portion and the
nonreloadable portion, using the individual JRun property files.

The hierarchy of the JRun property files lets you set the classpath for all Web
applications hosted by an individual JRun server (using local.properties) or for an
individual Web application (using webapp.properties).

Chapter 5: Developing Web Applications 55
To modify the reloadable portion of the classpath, you modify the setting of the
webapp.classpath property. The default setting of webapp.classpath is as follows:

webapp.classpath=/WEB-INF/classes;/WEB-INF/lib;/WEB-INF/jsp

Paths specified in webapp.classpath typically exist under the application’s /WEB-INF
directory.

The nonreloadable portion of an applications classpath consists of two properties:

• jrun.classpath: The .class and .jar files required by JRun itself.

• user.classpath: User-specified .class and .jar files used by all the user
applications and Java Virtual Machines (JVMs).

For any directory specified by these two properties, each .jar file contained in the
directory is automatically added after the directory in the classpath before invoking
JRun. The default setting for these two properties is as follows:

jrun.classpath={jrun.rootdir}/lib/ext;{jrun.rootdir}/lib/jrun.jar;
{jrun.rootdir}/lib/install.jar

user.classpath={jrun.rootdir}/servers/lib;{jrun.server.rootdir}/lib

Sharing classes between Web applications

The directory structure of a Web application is defined by the Java Servlet API
Specification, Version 2.2. As defined by this specification, all .class files associated
with a Web application must be contained under the root directory of the application.

However, JRun has added the ability for a Web application to access a .class file
outside of its directory structure so that multiple Web applications can share common
files. File sharing provides application developers with a place to put .class files
common to multiple applications such as database driver classes and custom tag
libraries. Adding a shared resource is as easy as moving a .class or .jar file into a
shared directory and then restarting the JRun server hosting any applications that
access the resource.

Note If you define an application to access a .class file outside of the
directory structure of the application, you will have to copy all shared
resources into the directory structure of the Web application before
creating the application’s .war file.

In JRun, each Web application is hosted by a JRun server. You may define your
environment such that all Web applications are hosted by the same JRun server, or you
may have Web applications divided among multiple JRun servers. Regardless of the
JRun server hosting the Web application, you can share class files among Web
applications.

JRun includes the following library directories that you can use for shared .class files.

• jrun/servers/lib: For .jar and .class files accessible by all JRun servers
and, therefore, by all Web applications. All Web applications in JRun have
access to files in this directory. These resources are not reloadable.

56 Developing Applications with JRun
• <JRun server root dir>/lib: For .jar and .class files accessible by all
applications associated with a particular JRun server. All Web applications
hosted by the JRun server have access to files in this directory. These resources
are not reloadable.

Distributed Web applications

This release of JRun does not supported distributed web applications.

Using the Default Web Application
A JRun server supports multiple web applications. Each of these applications is
mapped to a different URL so that JRun can recognize which application should
respond to a request.

Often, a Web application is mapped to a URL that contains the application’s name in
the URL, such as the following:

http://hostname/app1/app1_resource
http://hostname/app2/app2_resource

In this example, URLs beginning with http://hostname/app1/ reference resources
within app1 and those beginning with http://hostname/app2/ map to app2. The
application’s root directory functions as the document root for serving application
files. For example, for a Web application located at c:/apps/app1, the default welcome
file could be located at c:/apps/app1/index.html and can be served to a client using
the URL http://hostname/app2/index.html.

One exception to the application mapping convention exists; the default Web
application. The default Web application is the application mapped to either "/" or to
"//hostname/". The default application responds to URLs in the form:

http://hostname/resource

A default application has the following characteristics:

• It is mapped to "/" or to "//hostname/".

JRun resolves URLs from the most specific reference to the most general. If
JRun can find no other resource mapped to a URL, JRun always attempts to
resolve the URL using the default application.

• It uses a Web server’s document root directory as its document root directory.

This means the default application automatically serves JSP pages and other
server-side scripts from the Web server’s document root directory. For
example, if you are using the IIS Web server, the document root is typically
/inetpub/wwwroot. Because the default Web application uses that directory for
its document root, you can place your JSP pages, and other server-side scripts,
under /inetpub/wwwroot.

• It includes the directory JRun/servlets in its classpath

Chapter 5: Developing Web Applications 57
In previous versions of JRun, developers placed .class files for Java servlets in
this directory. By including JRun/servlets in the default application’s
classpath, the default application facilitates backward compatibility with
previous versions of JRun. By default, this directory is not used by any other
Web application.

One of the main reasons of the default Web application is to provide backward
compatibility with previous versions of JRun and the Java Servlet API to ease the
upgrade of an existing JRun application this version of JRun. In previous versions of
JRun, developers placed JSP pages and other server-side scripts int he document root
directory of the Web server and placed the .class files for Java servlets in the {jrun
root dir}/servlets directory.

Every Web server connected to a JRun server has associated with it a default Web
application. For example, the default JRun server contains a Web application named
default-app in the directory {jrun root dir}/servers/default/default-app.

Handling a request to the default Web application

The following example shows a URL corresponding to a resource in the default Web
application:

http://hostname/resource

Since JRun resolves URLs from the most specific reference to the most general, the
default application handles this request because it is the only application that matches
the URL. For more information on how JRun resolves URLs, see Chapter 6.

JRun searches the default application’s root directory (typically, the Web server’s
document root) for the resource matching the resource name. If found, JRun then
serves back the resource. In the case of a JSP page or a Java servlet, serving back the
resource means processing the JSP page or a Java servlet and returning the results of
processing back to the client.

If the Web application finds no resource corresponding to the URL, JRun returns the
request to the Web server for processing. For example, a client issues the following
request:

http://localhost/index.htm

The "/" matches the default application, but if the default application has no
corresponding servlet mapping for index.htm. JRun returns control to the Web server.
The Web server then servers the file index.htm from its document root back to the
client.

Using the default-app Web application

JRun provides a default application, named default-app, with the JRun default
server. This application is located in the directory JRun/servers/default/default-
app.

Upon installation of JRun, the default-app has all the characteristics of a default
application, meaning that:

58 Developing Applications with JRun
• It is mapped to "/".

• It uses a Web server’s document root directory as its document root directory.

• It includes the directory JRun/servlets in its classpath so that you can place
servlet .class files in that directory.

The default-app lets you begin developing Java servlets, JSP pages, and EJBs without
having to first create a Web application.

You use the same rules to add content to the default-app as you do to any Web
application. For more information on adding resources to a Web application, see
“Adding Web application components” on page 59.

Default application directory structure

A default application uses the same directory structure as any other application, as
described in the “Web application directory structure” on page 50. The only difference
in the directory structure for the default applications is that the default application
uses the Web server’s document root directory as its application root directory, not its
own.

By using the Web servers document root directory, the default application can serve
JSP pages, or other sever-side scripts, from the Web server’s document root. In this
case, the default application never looks in its own root directory for resources other
than for .class and .jar files under WEB-INF.

Note Upon installation, JRun is configured to start the JRun Web Server (JWS)
on the default JRun server. The document root for the JWS and,
therefore, for the default application, is
<JRun home dir>/servers/default/default-app.

Default Web application classpath

The section “Determining the Web application classpath” on page 54 describes the
classpath for all Web applications. In addition to the classpath described in that
section, JRun adds another path to the default Web application’s classpath:
{jrun.rootdir}/servlets. This means any .class or .jar file in this directory can be
accessed by the default Web application.

The {jrun.rootdir}/servlets directory is reloadable. Reloadability means JRun
performs dependency checking on the .class and .jar files within it. if a file is
modified since the last time the corresponding servlet was loaded, the servlet is
reloaded.

Developing Web Applications
JRun is a Web application server. Therefore, all Java servlets and JSP pages must be
part of a Web application to be served by JRun. This section describes the procedure

Chapter 5: Developing Web Applications 59
for creating a new JRun application, then describes how to add the resources and
components that make up the Web application.

Creating a Web application

JRun provides a utility for creating a new, empty Web application. As part of creating
the application, JRun creates the basic directory structure of the web application,
creates a web.xml file with the appropriate information in it, and registers the
application with JRun to create the application’s URL mapping.

Use the following procedure to create a new application:

1. In the left pane of the JMC, select machine_name > server_name > Web
Applications.

2. In the right pane, select Create an Application.

3. Choose the server name for the application.

4. Specify the name of the application as it will appear under the server in the left
pane.

5. Specify the Web server host for the application.

6. Specify the applications URL mapping.

7. Specify the root directory of the application.

Note The root directory of the Web application does not have to be under
the JRun directory structure; you can create it anywhere on your
system.

8. Click Create to create the application.

9. Add content to the Web application. For more information on adding application
resources, see “Adding Web application components” on page 59.

Adding Web application components

A complete Web application may be composed of Java servlets, JSP pages, static
content such as HTML pages, tag libraries, enterprise JavaBeans, and any other
application resources. As part of developing a Web application, you add these
components to the directory structure of the application.

The following sections describe how to add the following components to a Web
application:

• “Adding directories” on page 60

• “Adding HTML pages” on page 60

• “Adding Java servlets” on page 61

• “Adding JSP pages” on page 60

• “Adding tag libraries” on page 63

60 Developing Applications with JRun
• “Adding EJBs” on page 63

• “Adding additional resources” on page 63

Adding directories

The directory structure of a Web application defines at least one subdirectory named
WEB-INF. For a description of this directory, see “Web application directory structure”
on page 50.

However, many Web application contain additional directories under the application
root directory besides WEB-INF. As long as the new directory does not contain .class
or .jar files that have to be included in the application’s classpath, adding a
subdirectory to the application’s root requires no special action other than creating
the directory.

For example, you commonly place image files in a directory named images under the
application’s root directory. Another common directory is an include directory under
the application root for any files shared by more than one application resource. In this
case, you can create a directory named include under the application root.

Adding HTML pages

The application’s root directory functions as the document root for serving application
files. Add HTML pages for your application under the application root, or in any
subdirectory of the application root except under the WEB-INF directory. For example,
for a Web application located at c:/apps/app1, the default welcome file could be
located at c:/apps/app1/index.html.

Adding JSP pages

A JSP page lets you create servlets from text files containing a combination of HTML
and scripting code. When a client first requests a JSP page (.jsp file), the page is
translated into a Java source code file (.java file) then compiled into a Java class file
(.class file). For more information on creating JSP pages, see Chapter 7.

To add a JSP page to a Web application, you copy the JSP page to the application root
directory or to any directory under the application root except those directories under
WEB-INF. If you want to add a JSP to the default application, you copy it to the Web
server’s document root directory because that directory functions as the root directory
for the default application.

In JRun, the .java and .class files generated in response to a request for a JSP page
are written to the application’s WEB-INF/jsp directory.

Note The WEB-INF/jsp directory is not defined as part of the Java Servlet
Specification, Version 2.2; it is specific to JRun. Other application servers
may write the .java and .class files to a different location.

JRun actually uses a servlet, named jsp, to process a JSP page. This servlet responds to
any URL that requests a page ending in the .jsp suffix, as defined by the following
mapping:

Chapter 5: Developing Web Applications 61
• *.jsp = jsp

You can override the use of the jsp servlet to process requests for JSP pages by creating
a different mapping using the JMC. For more information on using a different servlet
to handle a JSP page, see Chapter 10.

Adding Java servlets

Java servlets are represented by a .class file. The procedure for adding a Java servlet
to a Web application depends on where you store the servlet. Typically, you store the
servlet in one of the following locations:

• WEB-INF/classes as a .class file

• WEB-INF/lib as a .class file in a .jar file

• A directory of classes shared by multiple applications

The directories WEB-INF/classes and WEB-INF/lib are automatically included in the
Web application’s classpath and all .class and .jar files in these directories are
reloadable. You must make sure that directories of shared classes are included in the
application’s classpath. In addition, some shared directories are reloadable, while
others are not. For more information on shared resource directories, see “Sharing
classes between Web applications” on page 55.

The most important issue concerning how JRun serves up Java servlets is that, by
definition, application servers cannot directly serve files from WEB-INF or from any
subdirectory of WEB-INF. So, if servlet .class files typically go in WEB-INF/classes or
WEB-INF/lib as a .jar file, how do they get served back to the client?

The procedure for adding a Java servlet to an application is as follows:

1. Copy the servlet’s .class file, or a .jar file containing the servlet’s .class file, to
the appropriate directory (typically WEB-INF/classes or WEB-INF/lib).

2. Use the app_name > Servlet URL Mappings property in the JRun Management
Console (JMC) to register the servlet within the appropriate Web application.

Registering a servlet sets up a mapping of a request URL to the servlet’s class file.
This registration information is written to the application’s web.xml file.

For example, you want to access a servlet represented by the file SnoopServlet.class.
You first copy the file SnoopServlet.class to c:/apps/app1/WEB-INF/classes. Then,
you use the JMC to register the servlet using the servlet mapping as shown in the
following table:

JMC Setting for Mapping Servlet

Virtual Path/Extension Servlet Invoked

/Snoop SnoopServlet

62 Developing Applications with JRun
The Virtual Path/Extension field specifies the URL corresponding to the servlet. The
servlet invoked field specifies the name of the servlet. The name of the servlet is the
name of the servlet’s class file without the .class extension.

Once the servlet is registered, you can request it using the following URL:

http://local_host/app1/Snoop

JRun processes the servlet and returns the results of the servlet to the client.

You get an error if you try to access the servlet directly using the following URL:

http://localhost/app1/WEB-INF/classes/SnoopServlet.class

This URL generates an error because JRun cannot serve file from under WEB-INF.

But, what happens if you copy the SnoopServlet.class file the root directory of app1
and attempt to access it using the following URL:

http://localhost/app1/SnoopServlet.class

This .class file is not in a directory included in the application’s classpath so JRun lets
the Web server send the file back to the client. Since a Web browser doesn't know how
to display the contents of a .class file, the browser prompts the client for the name of
a destination directory in which to store the file. But, you do not want to serve a .class
file back to a client, you want JRun to load the servlet, execute it, and return the results
of the servlet back to the client.

Using the invoker servlet

JRun includes an implicit servlet mapping that associates any URI containing the
string /servlet with the JRun invoker servlet. The invoker servlet allows you to copy
a servlet’s .class file to any directory within a Web applications classpath then
reference the servlet without first registering it. To reference an unregistered servlet,
use a URL in the form:

http://local_host/app1/servlet/<servlet class name>

This mapping can be useful in either of the following situations:

• During the development and testing phase, you do not have to register servlets
in order to process them. The invoker servlet automatically creates a
temporary servlet registration using the servlet’s class name.

• When moving from earlier JRun releases, this mapping allows you to get started
quickly by treating servlets beneath WEB-INF/classes as if they were in a
servlets directory.

Caution For security and performance reasons, you should always define
explicit mappings for all of your servlets and not rely on the invoker
servlet. In a production application, you might even consider removing
the mapping /servlet=invoker from the global.properties file.

Chapter 5: Developing Web Applications 63
Adding tag libraries

The JavaServer Pages Version 1.1 specification describes a framework for tag libraries.
Tag libraries allow developers to encapsulate sets of related functionality within a set
of HTML tags. JSP pages can then use these tags to take advantage of the functionality
built into the libraries. For example, you can create a library of tags for simplifying
database access, or for performing basic e-commerce operations.

A tag library consists of one or more actions (referred to as tags, or custom tags), each of
which performs processing, as coded in an associated Java tag handler class. A
developer defines the functionality (including attributes) of each custom tag, coding
the tag handlers and defining each custom tag in the Tag Library Descriptor (TLD) file.

If the custom tag creates a scripting variable, the Java developer must also create a Tag
Extra Information (TEI) file. A TEI file is a Java class that defines scripting variables
(and their scope) for use by JSP code. The TEI file can also be used to validate
attributes at translation time.

A deployable tag library must incorporate tag handlers, TLD file, TEI classes, and other
supporting classes into a .jar file. This .jar file must be located in the Web
application’s WEB-INF/lib directory.

For a complete description of creating and using tag libraries, see Chapter 21.

Adding EJBs

EJBs are not associated with a Web application but with the JRun server hosting the
Web application. In order for a Web application to access an EJB, that EJB must be
deployed on the JRun server hosting the Web application, or on a JRun server
accessible to the Web application.

For a complete description of developing and deploying EJBs on JRun, see Chapter 23.

Adding additional resources

Resources that you can add include image directories, beans, and class files for
resources such as database drivers. The only implications for adding these resources
to a Web application hosted by JRun is to place the resources in the correct location. If
the resource is represented by a Java .class or .jar file, it must be located in a
directory included in the Web application’s classpath (typically WEB-INF/classes).
For a definition of the classpath, see “Determining the Web application classpath” on
page 54.

For other types of resources, such as an images directory, add them in the way that you
would for any other Web application.

64 Developing Applications with JRun
Deploying Web Applications
When you distribute a Web application, you can either distribute it as the expanded
directory structure, or you can distribute it as a single, compressed file called a Web
ARchive (WAR) file. A WAR file has the extension .war.

A .war file contains the complete directory structure and all files that define the
application. You create a .war file using the same tools that you use to create a .jar
file.

A .war file makes it easy for you to distribute an application because you only need to
distribute a single file. However, you must expand the .war file before you can execute
the Web application contained within it. Therefore, JRun includes a deployment tool
that you use to expand a .war file.

Packaging an application for deployment

Your application will probably fit one of the following deployment scenarios:

• Packaging standard Web applications

A standard Web application uses no shared resources or references servlets or
JSP pages in another Web application. You can package and deploy this type of
Web application as a single .war file.

• Packaging Web applications with shared resources

The section “Sharing classes between Web applications” on page 55 describes
how to share class files among Web applications. If your Web applications relies
on file sharing, you should copy all shared classes into the directory structure
under your application’s root directory before packaging the application as a
.war file. This ensures that all class files required by the application are within
the .war file.

For example, your application may make use of a shared tag library under the
directory <JRun root dir>/servers/lib. Before packaging your application
as a .war file, copy the shared library to the WEB-INF/lib directory under the
application’s root directory.

• Packaging Web applications with EJB

You deploy EJBs with .jar files. When packaging a J2EE enterprise application,
EJB .jar files and Web application .war files may both be packaged as part of a
J2EE enterprise archive (.ear) file.

Deploying a Web application within JRun

While JRun allows you to develop Web applications, you may also use JRun as the
deployment application server for Web applications that you purchased from a vendor
or were developed using another Web application server.

Chapter 5: Developing Web Applications 65
When you receive a Web application for deployment, you typically receive a .war file.
In order to deploy the application for execution within JRun, you use the JRun
Management Console (JMC).

The JMC performs the following actions to deploy the application:

1. Expands the .war file.

2. Updates any JRun settings and property files as needed.

3. Sets up an application mapping to bind the application to a URL recognized by
the Web application.

For more information on distributing Web applications, creating .war files, and using
the JMC to deploy Web applications, see Chapter 33.

66 Developing Applications with JRun

C H A P T E R 6
Chapter 6 How JRun Maps Requests to
Servlets
This chapter describes how JRun handles requests and how requests are mapped to
Web applications and servlets.

Contents

• Servlet Mapping Fundamentals.. 68

• How JRun Serves Files.. 71

68 Developing Applications with JRun
Servlet Mapping Fundamentals
JRun Version 3.0 fully implements the Web application architecture described in the
Servlet API Version 2.2 specification. This implementation includes mapping requests
to servlets in a manner compliant with the specification. The Web application
architecture is a significant change from previous versions of the Servlet API. For a
complete overview of Web applications, refer to Chapter 5.

JRun uses two types of mappings to invoke servlets, JSP files, HTML files, and
templates:

• Application mappings associate the Web application’s URL with the physical
directory that contains the application.

• Servlet mappings associate a servlet with a prefix (such as /servlet) or suffix
(such as *.jsp).

Mappings
Each Web application running in a JRun server has one application mapping and
multiple servlet mappings. To use Web applications in an optimal manner, you need to
understand how JRun uses application mappings and servlet mappings to handle
requests for HTML files, JSP pages, and servlets.

A JRun server contains two types of Web applications:

• Default applications. Every Web server has a default Web application. JRun
uses the default application differently than other Web applications in a JRun
server. With the exception of .class files (which are always accessed using a
classpath) and explicitly mapped resources, JRun serves default application
content (such as HTML and JSP files) relative to the Web server’s root directory.
A default application is designated by setting appname.use-webserver-
root=true in the application’s webapp.properties file. For more information
on classpaths and the webapp.properties file, refer to Chapter 5.

• Additional Web applications. Additional Web applications map to application
URLs, as specified in the JRun server. For non-default applications, JRun serves
Web application content relative to the Web application root. Web application
content includes servlets, JSP pages, HTML files, images, cascading style sheets,
and other resources.

If multiple Web servers connect to a single JRun server, the JRun server contains
multiple default applications — one for each Web server. The JRun connector
module (JCM) manages the relationship between a Web server and its default
application.

JRun follows the Servlet API Version 2.2 specification in considering a URL to be
composed of a protocol, host, port (optional), and request uniform resource indicator
(URI), as shown in the following illustration:

Chapter 6: How JRun Maps Requests to Servlets 69
Application and servlet mappings use different parts of the request URI to determine
the servlet to invoke, dividing it into the following components:

• The context path (ContextPath) specifies the path prefix associated with a Web
application mapping. For a default application (rooted at the base of the Web
server’s URL namespace), the context path is an empty string. For a non-default
application, the context path starts with a slash (/) but does not end with one.

• The servlet path (ServletPath) is the portion of the URL matching the servlet
mapping that activated the request. This starts with a slash (/).

• Path information (PathInfo) comprises the remaining portion of the request
path.

How JRun divides a request URI into context path, servlet path, and path information
is dependent on application mapping and servlet mapping. For example, assuming an
application mapping for /hrapp, a servlet mapping for /NewEmpServlet, and a request
URI of /hrapp/NewEmpServlet?empid=61355, then /hrapp is the context path,
/NewAppServlet is the servlet path, and path info is empid=61355. Assuming no
application mapping, a servlet mapping for /hrapp/NewEmpServlet, and a request URI
of /hrapp/NewEmpServlet/login, then the context path is empty,
/hrapp/NewEmpServlet is the servlet path, and path info contains /login. For
complete examples, see “Scenarios” on page 72.

Note Except for URL encoding differences between the request URI and the
path parts, the following statement is always true:

RequestURI = contextpath + servletpath + pathinfo

The HttpServletRequest object passed to your servlet contains methods that you can
use to access ContextPath, ServletPath, and PathInfo. For more information, see
“javax.servlet.http” on page 188.

Application mappings

An application mapping relates a context path to the name and directory path of a Web
application. You maintain these mappings through the JMC. Internally, JRun
maintains application mappings in the local.properties file.

70 Developing Applications with JRun
This mapping does not need to have any correspondence to the physical location of
the Web application in the file system of the Web server. For example, you may have a
Web application located on your server in the directory c:/apps/myapp where myapp is
the document root directory for the Web application. Underneath myapp would be the
directory structure of the Web application.

You can then create an application URL mapping for /myapp so that the Web
application responds to a URL in the form http://www.mycomp.com/myapp. Once you
have set up this mapping, all URLs containing the /myapp context path are mapped to
the Web application.

For more information on defining application mappings through the JMC, see the
JRun Setup Guide.

Servlet mappings

A servlet mapping associates a servlet with a URL pattern, which can be either a prefix
(such as /MyServlet) or a suffix (such as *.jsp). When a request URI has a servlet path
that matches a specified URL pattern, JRun invokes the associated servlet.

When the Web server receives a request for a page or servlet, JRun first locates the Web
application by matching the request URI’s context path with the application URL
mapping defined to JRun. Once the Web application is located, JRun locates the
specified resource using that Web application’s servlet mappings. If no application
mapping matches the context path, JRun attempts to locate the resource using servlet
mappings in the default application for that Web server.

Explicit servlet mappings are defined and managed via the JMC and are maintained in
the web.xml file. To maximize security, your production applications should define
explicit servlet mappings for each servlet in your Web application. For information on
defining servlet mappings through the JMC, see the JRun Setup Guide.

JRun also maintains a set of implicit servlet mappings, as follows:

• /servlet = invoker

• *.jrun = invoker

• *.jsp = jsp

• / = file (non-default applications only)

• *.shtml = ssifilter

• *.thtml = template

You can override an implicit servlet mapping by defining a new mapping in the JMC.
For example, you might modify the servlet mapping for the invoker servlet by
associating /servlet with LoginServlet or 404Servlet.

Note Implicit servlet mappings are shared by all applications in a JRun server
and are stored in the local.properties file.

Chapter 6: How JRun Maps Requests to Servlets 71
Using the invoker servlet

JRun includes an implicit servlet mapping that associates /servlet with the invoker
servlet, which causes a request URI containing a servlet path of /servlet to be
handled by the invoker servlet. The invoker servlet provides a general-purpose
invocation mechanism for servlets that have not been defined to JRun. This mapping
can be useful in either of the following situations:

• During the development and testing phase, this mapping saves you from
defining servlet mappings explicitly. The invoker servlet automatically creates
a temporary servlet registration using the class name.

• When moving from earlier JRun releases, this mapping allows you to get started
quickly by treating servlets beneath WEB-INF/classes as if they were in a
servlets directory.

For security and performance reasons, you should define explicit mappings for all of
your servlets and override the /servlet = invoker mapping in your production
systems. In a production application, you might consider associating the /servlet
mapping with a customized servlet that always returns an error. For example,
/servlet = 404servlet.

JRun uses the invoker servlet as follows:

1. Access the request URI (for example, /app1/servlet/SnoopServlet).

2. Extract the context path (for example, /app1).

3. Extract the servlet path (for example, /servlet).

4. Extract the servlet name out of path info (for example, /SnoopServlet).

5. Invoke the servlet by calling
ServletContext.getNamedDispatcher(servletname).

Note JRun first looks in the Web application’s web.xml file to see if the servlet
has been defined. If no match is found, JRun looks for the servlet in the
directories listed in the application’s classpath and creates an instance
using the servlet’s class name.

How JRun Serves Files
JRun examines all requests that come to the Web server because the default
application maps to the Web root (/). JRun uses advanced coding techniques to ensure
that non-JRun Web server files are served with no performance degradation.

The following discussions describe JRun Web server interaction and provide two file-
serving scenarios.

72 Developing Applications with JRun
Web server interaction

A Web server passes all incoming requests to JRun. JRun uses application mappings
(for both default and non-default applications) and servlet mappings (both implicit
and explicit) to process each request, as shown in the following figure.

Each Web server has a separate default Web application.

Depending on application URL mapping, servlet mapping, and the existence of the file
on the Web server, JRun performs one of the following actions:

• Invokes the associated servlet or JSP page.

• Returns control to the Web server, allowing the Web server to locate and serve
the file (default application only).

• Returns an error. If a resource cannot be found in a default application, the Web
server returns a 404; if a resource cannot be found in a non-default application,
JRun returns a 404.

JRun returns errors directly to the client for all but the default application. Thus any
custom error pages defined for your Web server (to handle 404 errors, for example) are
not used. You can, however, implement the same functionality by defining custom
error pages for your JRun applications.

Scenarios

This discussion contains two scenarios, each with several access examples.

Each scenario describes the following:

• One or more application mappings

• Implicit servlet mappings

Chapter 6: How JRun Maps Requests to Servlets 73
• Explicit servlet mappings

Each example lists the following:

• Request URI

• JRun response

• Actual resolved document

• Processing sequence

Single default Web application

This scenario contains a single default Web application. Default Web applications map
to the Web server root (/). This scenario also uses the following implicit servlet
mappings:

• *.jsp = jsp

• /servlet = invoker

Access Examples: Serving files for a single default application

Request URI JRun response Actual resolved
document

Processing sequence

/index.html The / matches the default
application, but the default
application has no
corresponding servlet
mapping. JRun returns
control to the Web server.

webroot/index.html 1. Default application

2. Web server

/app1
/index.html

There is no application
mapping for app1; so JRun
uses the default application.
The default application has
no corresponding servlet
mapping. JRun returns
control to the Web server.

webroot/app1/
index.html

1. Default application

2. Web server

74 Developing Applications with JRun
Multiple Web applications in a JRun server

This scenario contains the following applications:

• The default Web application maps to the Web server root (/).

• The app1 Web application maps to /app1. This Web application has an explicit
servlet mapping: /snoop = SnoopServlet.

Both Web applications use the following implicit servlet mappings:

• *.jsp = jsp

• /servlet = invoker

/app1/foo
/bar.jsp

There is no application
mapping for app1; so JRun
uses the default application.
The default application has
a servlet mapping for
*.jsp; so JRun invokes the
jsp servlet, which
communicates with the
Web server to resolve the
path.

webroot/app1/foo/
bar.jsp

1. Default application

2. jsp servlet

3. generatedname.class

/app1/snoop There is no application
mapping for app1 so JRun
uses the default application.
The default application has
no corresponding servlet
mapping; so JRun returns
the request to the Web
server, which returns a 404
to the client.

File not found (404)

(To get this example to
work, define a servlet
mapping for
/app1/snoop.)

1. Default application

2. Web server

/servlet/
SnoopServlet

There is a servlet mapping
for /servlet; so JRun
passes control to the
invoker servlet.

Not applicable for servlets. 1. Default application

2. invoker servlet

3. SnoopServlet

Access Examples: Serving files for a single default application (Continued)

Request URI JRun response Actual resolved
document

Processing sequence

Chapter 6: How JRun Maps Requests to Servlets 75
Access Examples: Serving files for multiple application

Request URI JRun response Actual resolved
document

Processing sequence

/index.html The / matches the default
application, but the default
application has no
matching servlet mappings.
JRun returns control to the
Web server.

webroot/index.html 1. Default application

2. Web server

/app1
/index.html

JRun uses the App1
application and serves the
index.html file found in
the Web application’s root.

approot/index.html 1. App1 application

/app1/foo
/bar.jsp

JRun uses the App1
application. The App1
application has a servlet
mapping for *.jsp; so JRun
invokes the jsp servlet,
which uses the application
mapping to resolve the
path.

approot/foo/bar.jsp 1. App1 application

2. jsp servlet

3. generatedname.cla
ss

/app1/snoop JRun uses the App1
application. The app1
application has a mapping
for /snoop; so JRun passes
control to the associated
servlet (SnoopServlet).

Not applicable for servlets. 1. App1 application

2. SnoopServlet

/app1
/servlet/
SnoopServlet

JRun uses the app1
application. The app1
application has a mapping
for /servlet; so JRun
passes control to the
invoker servlet.

Not applicable for servlets. 1. App1 application

2. invoker servlet

3. SnoopServlet

76 Developing Applications with JRun

Se c t i o n II
Server-Side Scripting and JSP Section II
Server-side scripts are interpreted by your Web server before the server delivers
information back to the Web client. As part of interpreting these scripts, the Web
server processes any servlets referenced within them.

JRun extends your Web server to support the following types of server-side scripts:

• JavaServer Pages (JSP files)

JSP pages let you invoke and create servlets. The scripting language of a JSP
file defaults to Java. However, JRun lets you use JavaScript (ECMAScript) or
WebL scripts within JSP files. This means you can develop your JSP files
without having to use any Java code.

• Server-side includes (SHTML files)

SHTML files let you invoke servlets.

• Presentation templates (THTML files)

THTML files lets you create presentation templates so that your Web pages
have a consistent look.

Contents

Creating JSP Pages... 79

JSP Syntax... 97

JSP Page Object Reference.................................... 119

JSP Compilation ... 129

JSP Examples.. 137

Upgrading JSP Pages ... 147

Using Server-Side Include Files............................. 151

78 Developing Applications with JRun
Presentation Templates... 155

Taglets... 161

C H A P T E R 7
Chapter 7 Creating JSP Pages
JSP pages let you create servlets from text files containing a combination of HTML
and scripting code. When a client requests a JSP page, the page is translated into a
Java servlet. The scripting portion of a JSP page allows you to present dynamic
content back to the client. In addition, you can access Java servlets and EJB
components from JSP pages.

This chapter describes the basics of creating servlets as JSP files.

Contents

• Writing JavaServer Pages ... 80

• Developing JSP Files .. 84

• Upgrading from a Previous Release of JSP ... 95

80 Developing Applications with JRun
Writing JavaServer Pages
One possible component of a Web application is a JavaServer Page (JSP). JSP pages
contain HTML and embedded scripting code. You typically use JSP pages to deliver
dynamic content to a Web client.

JSP pages are translated "on the fly" into Java servlets and have the file extension of
.jsp. JSP pages can contain any combination of the following:

• Template data (typically text and HTML tags)

• JSP actions

• JSP directives

• JSP scripting commands

Note The syntax for JSP actions and JSP directives is determined by the JSP
specification. The syntax for JSP scripting commands depends on the
scripting language that you choose for your JSP page. In most cases, the
examples in this chapter use Java. However, examples in JavaScript are
also shown.

This chapter provides an introduction to Allaire’s implementation of JavaServer Pages.
For more information on JSP syntax, including JSP actions and directives, see Chapter
8.

Introduction to JSP scripting

A script is a series of commands executed by a Web server. A script can, for example,
do the following:

• Assign a value to a variable. A variable is a named storage location that can
contain data, such as a value.

• Instruct the Web server to send something, such as the value of a variable, to a
browser. An instruction that sends a value to a browser is an output expression.

• Combine commands into methods. A method is a named sequence of
commands and statements that act as a unit.

JSP does not define a scripting language but rather allows you to write documents
containing HTML and scripting code. Although the language of the scripting code is
often Java, you can use JavaScript.

JRun translates JSP pages into Java servlets. A benefit of page translation is that you do
not need to write actual Java servlets, as JRun hides this complexity from you. If you
only have a working knowledge of HTML you may begin writing applications using JSP
pages. However, if you require the flexibility of Java servlets you may still make full use
of the Servlet API from within a JSP page.

Chapter 7: Creating JSP Pages 81
Creating your first JSP page

In this section you create your first JSP page to implement a Hello World servlet.

1. Create a new text file and enter the following lines:

<html>
<head>
<title>Greetings</title>
</head>
<body>
<h1>Hello World!</h1>
</body>
</html>

2. Save the file into the Web server’s document root and name it greeting.jsp.

For example, this directory may be c:\Inetpub\wwwroot or, if you are using the
JRun Web server, it may be <JRun home dir>\servers\default\default-app,
where <JRun home dir> corresponds to the home directory of JRun and
default-app is the default JRun Web application.

3. Request the document through your browser using the appropriate URL (e.g.
http://<your-host>/greeting.jsp).

As you have probably noticed, the document that you just created is a simple
HTML document with no Java code. What makes this document special is its file
extension of .jsp. By default, JRun is configured to recognize files with the .jsp
extension and translate them into a Java servlet. This operation is totally
transparent to the client requesting the page.

Note that you can set up mapping so that JRun can recognize other file extensions
besides .jsp as JSP pages. For more information, see the JRun Setup Guide.

4. Now modify greeting.jsp to perform some simple looping using embedded Java
code.

Edit your greeting.jsp file to look like the following:

<html>
<head>
<title>Greetings</title>
</head>
<body>
<%

for (int i=0; i < 5; i++) out.println("<h1>Hello World!</h1>");
%>
</body>
</html>

Save the file and request it again through your browser. JRun recognizes scripting
code as being inside the <% %> tags. In this example, the scripting code is Java. The
above loop prints out "Hello World!" five times to the browser using the JSP out
object.

82 Developing Applications with JRun
The out object is one of many objects available within a JSP page. Use this object
to write output back to the client. For a description of all objects available within a
JSP page, see Chapter 9.

In addition to Java, JRun supports other scripting languages within a JSP. You can use
JavaScript within these files. Typically, JavaScript is interpreted at runtime. However,
JRun compiles your JavaScript to increase your servlet’s performance.

The JavaScript version of the code in the previous example is shown below:

...
<%@ page language = "javascript" %>

<%
var i;
for (i=0; i < 5; i++) out.println("<h1>Hello World!</h1>");

%>
...

The first line in this example uses the page directive to set the scripting language to
JavaScript. This statement is required because the default language in a JSP page is
Java.

Note You cannot mix scripting languages within a JSP page. Once you define
the scripting language for the page you cannot change it.

Multiple HTML/Java blocks

When creating a JSP page, you can mix blocks of Java code and HTML. JRun handles
both types of input, as illustrated in the following example:

<html>
<head><title>Mix me up</title></head>
<body>
<p>
<%

out.println ("This list is generated by Java code");
%>
<h1> A list generated by Java</h1>

<%

for (int i = 1; i < 10; i++)
{

out.println ("" + i);
}

%>

</body>
</html>

The second block of scripting code in this example outputs the list count, as stored in
the variable i, as well as an HTML tag defining each output line as being part of an
HTML list. This example shows one of the most important features of JSP pages: the
generation of HTML text from within a script for output back to the client.

Chapter 7: Creating JSP Pages 83
One of the main purposes of outputting HTML text from within a script is to create
dynamic HTML output. Dynamic output can be conditionalized by information
passed into the page, such as the client’s name or preferences, or can be controlled by
information obtained by the page from cookies or other sources.

From JSP to Java to servlets

The process of converting a JSP page into a Java servlet is called page translation.
When a JSP page is first requested, JRun parses the file and outputs a Java source code
file. The Java source code file is compiled into a servlet class file. The servlet class file is
then loaded and run.

The following figure shows the steps JRun performs when it receives a request for a JSP
page:

The following steps describe the actions that JRun performs when a JSP page is
requested:

1. The JSP page (.jsp file) is parsed by JRun which produces Java source code (.java
file).

2. The Java source code is compiled into a Java servlet class (.class file).

3. The Java servlet .class file is loaded into memory on the Web server.

4. The servlet is run.

Any output from the servlet is returned back to the client. The default output of a
JSP page has a MIME type of text/html; charset=ISO-8859-1. This MIME type
configures the output to be sent directly to the client.

Upon subsequent requests of the JSP page, if the JSP page has not been modified since
its last translation, JRun performs only Step 4 because the servlet remains in memory
after its initial request. By default, if the JSP file has been modified since its last
translation, it is retranslated.

In a deployed application, you may want to prohibit automatic translation of JSP
pages. To disable translation of JSP pages, use the JRun Management Console. For
more information on disabling translation, see Chapter 10.

With automatic translation disabled, you can still translate a JSP page by invoking the
JSPC compiler from the system command line. In this scenario, you use the JSPC
compiler to translate your JSP page to a .class file, then copy the new .class file to
the appropriate location for your application, replacing the old .class file.

84 Developing Applications with JRun
Developing JSP Files
This section describes some of the basic tasks that you can perform in JSP pages. The
examples provided here are in Java. However, because you can choose a different
scripting language for your JSP pages, you can modify the example code accordingly
for your chosen scripting language.

The following tasks are described in this section:

• “Storing JSP pages” on page 84

• “Declaring variables” on page 84

• “Adding conditional logic to JSP pages” on page 85

• “Using expressions” on page 86

• “Using JSP objects” on page 86

• “Using parameters and attributes with JSP objects” on page 87

• “Performing an include” on page 88

• “Calling another JSP page” on page 90

• “Buffering JSP output” on page 92

• “Using a tag library” on page 92

• “Handling errors” on page 93

• “Using the JSP compilers” on page 94

Storing JSP pages

You store JSP pages in your Web server’s document root directory. For example, if you
are using IIS, this directory is c:\Inetpub\wwwroot. If you are using the JRun Web
server for the default JRun server, this directory is <JRun home dir>\servers\
default\default-app, where <JRun home dir> corresponds to the home directory of
JRun and default-app is the default JRun Web application.

Declaring variables

As with any scripting capability, JSP pages allow variable declarations. Variables can be
defined once and reassigned, as shown in the following example:

<html>
<head><title>Using variables</title></head>
<body>
<p>
<% int myVar = 5; %>
 <% out.println ("Value of myVar: " + myVar); %>
<p>
<%

myVar = 2;
out.println("Value of myVar again: " + myVar);

Chapter 7: Creating JSP Pages 85
%>
</body>
</html>

The myVar variable is accessible only within the JSP page in which it is declared.

A variable may be reassigned within the page, but the name itself may not be declared
more than once. For this reason, the following example illustrates the incorrect use of a
variable. This example creates a compiler error because it declares myVar as an int in
the first Java block and then redeclares it as an int again in the third Java block.

<html>
<head><title>Using variables</title></head>
<body>
<p>
<% int myVar = 5; %>
 <% out.println ("Value of myVar: " + myVar); %>
<p>
<%

int myVar = 2; //error here
out.println("Value of myVar again: " + myVar);

%>
</body>
</html>

Adding conditional logic to JSP pages

The following example illustrates the use of conditional statements within a JSP page:

<html>
<head><title>Account Balance</title></head>
<body>
<p>
<% double accountBalance = 1.00; %>
Your Current Balance: <% out.println(accountBalance); %>

<% if(accountBalance <= 1.00) { %>

 Get a Job.

<% } %>
</body>
</html>

This example prints out the value of the variable accountBalance; and if
accountBalance is less than or equal to one dollar, the next statement suggests that
the user "Get a job." You may modify the statement by increasing or decreasing the
accountBalance.

Also notice that the conditional statement uses the block <% } %> to close the if
statement. This construction allows the HTML " Get a job.
" to be
displayed if the condition is true. If you prefer the condition to remain in one Java
block, the following provides the same results:

<% if(accountBalance <= 1.00) out.println(" Get a job.
"); %>

86 Developing Applications with JRun
In this example, the statement " Get a job.
" is included in the
scripting code, rather than being specified within the document as HTML text. With
either method, the browser receives and displays the message the same way.

Using expressions

So far, the examples have displayed variable values using the out.println() method.
However, in certain situations, this usage may clutter your document when you
display values. An expression element allows you to display evaluated statements
without using out.println(), thus keeping your JSP page more readable.

The following example illustrates the use of an expression element:

<html>
<head><title>Account Balance</title></head>
<body>
<p>
<% double accountBalance =1.00; %>
Your Current Balance: <%=accountBalance %>

<% if(accountBalance <= 1.00) { %>

 Get a Job.

<% } %>
</body>
</html>

The above example is a modification of the previous conditional example. In this
example, the <% out.println(accountBalance); %> has been replaced by the
expression <%= accountBalance %>. This statement displays the value of an
expression without using out.println().

Using JSP objects

By default, JRun creates several JSP objects to use within JSP pages. These JSP objects
are instances of objects defined by the JSP specification, the Java Servlet API, or by core
Java libraries.

All scripting languages that you can use within a JSP page are required to provide
access to the JSP objects. Access to these objects means that you can call object
methods (functions) and access data stored within them.

You can use these objects to perform basic tasks within a JSP page, including:

• request object: The HTTP request sent to the JSP page from the client.
Included in the HTTP request are any name/value pairs in the request header.

• response object: The HTTP response object output by the JSP page. You can
use the response object to return information back to the client, including
cookies.

• out object: The output stream written back to the client. Any HTML text output
by the JSP page is typically written to the out object for interpretation by the
client.

Chapter 7: Creating JSP Pages 87
For example, the following JSP uses the out object to write output back to the client:

<html>
<head><title>Using variables</title></head>
<body>
<p>
<% int myVar = 5; %>
 <% out.println ("Value of myVar: " + myVar); %>
<p>
</body>
</html>

In this example, the output information contains only text. However, all output sent
back to the client is interpreted by the client’s HTML browser. Therefore, you can
include HTML tags within this text output as well.

For example, you could rewrite the output line to mark the returned output as
Heading 2 text:

 <% out.println ("<h2>Value of myVar: " + myVar + "</h2>"); %>

Use the JSP request object to access any data sent from the client to the JSP as part of
the HTTP request. For example, the request may contain data passed to the JSP from
an HTML form. Form data is sent to the JSP page as name/value pairs in the HTTP
request. To access this information, use the request object and the methods of that
object.

You can also pass parameters to a JSP page as part of the page’s request URL. For
example, you use the following URL to request a JSP page and pass two parameters
along with the request:

http://localhost/my.jsp?fName=Bob&lName=Smith

You use the getParameter method of the request object to obtain the parameters
passed to the JSP page either from a form or from the request URL:

<%
String firstName = request.getParameter("fName");
String lastName = request.getParameter("lName");
out.println("Welcome " + firstName + " " + lastName);

%>

All objects supported by JRun are described in Chapter 9.

Using parameters and attributes with JSP objects

Many of the JSP objects contain methods to access data stored within the object as
either parameters, attributes, or both. When using the JSP objects, you should be aware
of when to use parameters and when to use attributes.

Parameters are always stored within a JSP object as strings. The main use of
parameters is to pass data from the client to the server within the client’s request, or
from the server back to the client as part of the response.

For example, when a client submits a form, all form data is sent to the server as name/
value pairs in the request object. The name corresponds to the parameter name and

88 Developing Applications with JRun
the value is a string containing the parameter value. Within your JSP page, you then
access the parameter using the getParameter method of the request object.

The following example uses the request object to obtain the value of two parameters,
fName and lName, included in the HTTP request to the JSP page, and then uses the out
object to write these value back to the client:

<%
String firstName = request.getParameter("fName");
String lastName = request.getParameter("lName");
out.println("Welcome " + firstName + " " + lastName);

Attributes are a type of data typically used to communicate information among
server-side components such as JSP pages and Java servlets. For example, when one
JSP page calls another, the calling JSP page may pass information to the destination
page as attributes within the request or session object.

Attributes are stored as name/value pairs where the name corresponds to the attribute
name and the value is stored as an instance of a Java object, java.lang.Object. This is
the main difference between parameters and attribute: parameters are always stored
as strings, and attributes are stored as Java objects.

For example, if the session object for a JSP page contains the attributes fName and
lName, you could use the following code to access them:

<%
String firstName = (String) session.getAttribute("fName");
String lastName = (String) session.getAttribute("lName");
out.println("Welcome " + firstName + " " + lastName);

%>

Notice that this example uses a cast to convert the return value of getAttribute to
String. This cast is required because getAttribute always returns an object of type
java.lang.Object. The cast converts the returned object to the destination format: in
this case, a string.

Attributes give you a great deal of flexibility when developing server-side applications
because you are not limited to storing and retrieving just strings, as is the case with
parameters. With attributes, you can store and retrieve objects of any type and pass
those objects among the components of your application.

Performing an include

The include directive lets you include other files into a JSP file at parse time. The
argument to the include directive is typically a string literal specifying the included
file name. The syntax of the include tag follows:

<%@ include file="path" %>

Set path to the path of the specified file. The contents of the specified file are inserted
into the JSP file at the location of the statement.

The result of using an include directive in a JSP page is a single JSP page. This is true
even if you include one JSP page within another. JRun creates a single JSP page, and

Chapter 7: Creating JSP Pages 89
correspondingly a single servlet, containing the contents of both the original JSP
pages.

JRun performs run-time dependency checking on all included files. If the included file
changes after the including file is loaded into memory, the including file will be
retranslated the next time that it is requested.

The following example JSP page includes another JSP page that contains header
information. You can use this structure with your JSP pages to standardize the look of
each page. This structure also makes changes to the header information easier
because you only need to make the change once.

<html>
<%@ include file="my_header.jsp" %>

<%-- Rest of your JSP page--%>
...
</body>
</html>

Now you can define my_header.jsp, the JSP page containing header information:

<head>
<title>Greetings</title>
</head>

<body bgcolor="white" style="font-family: Arial; font-weight: medium;
font-style: normal">

<center>
<table width=80%>
<tr>
<td><img src="logo.gif" width=200 height=21 alt="Example Include"
border="0"><P></td>
<td><H1>Greetings</h1></td>
</tr>
</table>
</center>

As you can see, this page defines a title, sets default colors for the body tag, and creates
a table containing a logo and the word "Greetings."

The previous example shows a static header file. That is, the header file displays the
same information regardless of the JSP page that includes it. However, you can make
this header page more flexible by passing information to it from the including JSP
page.

You can use the JSP request object to pass information to an included JSP page. For
example, you may want to create a header JSP page that takes as input an attribute
defining the page’s title. The including page could set this attribute in the request
object as follows:

<html>
<%request.setAttribute("title", "Greetings"); %>
<%@ include file="my_header.jsp" %>
</body>

90 Developing Applications with JRun
</html>

<%-- Rest of your JSP page--%>
...

Notice that this example uses an attribute, rather than a parameter, to pass the value to
the destination page. Remember, attributes allow you to pass objects among your JSP
pages while, parameters allow you to pass only strings.

The header file, my_header.jsp, can then access this attribute as follows:

<html>
<head>
<title><%= request.getAttribute("title")%></title>
</head>

Adding the functionality to handle attributes makes your included files flexible and
more general purpose.

Calling another JSP page

By calling one JSP page from another, you can develop modular JSP pages that you can
then use to construct complex applications. When you call one JSP page from another,
you can select one of two different calling operations:

1. The destination page executes to completion and then returns control back to the
calling page. Use the jsp:include action to make this call.

2. The calling page transfers control to the destination page and then terminates. In
this case, the destination page does not return control back to the calling page.
Use the jsp:forward action to make this call.

For more information on the jsp:include and jsp:forward actions, see “Actions” on
page 108.

These two calling operations are shown in the following figure.

Chapter 7: Creating JSP Pages 91
Note If you modify the destination page after it is loaded, a call to that page
causes JRun to retranslate it. However, JRun will not retranslate the
calling JSP page if the destination page is modified.

By default, JRun buffers the output data sent from a JSP page to the client. Calling
either the jsp:include or the jsp:forward action causes JRun to flush a JSP page’s
output buffer. For more information on this output buffer, “Buffering JSP output” on
page 92.

The following example shows how one JSP page can call another. It also describes how
you can pass attributes to the destination JSP page.

1. Create a new text file and enter the following lines into it:

<% request.setAttribute("Greeting", "Hello World"); %>
<jsp:include page="b.jsp" flush="true"/>

Save the file into your Web document root as a.jsp

This example uses the JSP request object to pass the attribute Greeting with a
value of "Hello World." The attribute can be retrieved from the request object in
b.jsp. For more information on the request object, see Chapter 9.

2. Now create the file b.jsp. This file should also be saved into your Web server’s
document root. Enter the following into b.jsp:

The greeting from b is: <%=request.getAttribute("Greeting")%>

This example illustrates the passing of data from one page to another. Note that
the value of the attribute is not restricted to just strings. You may pass in an object
of any type as an attribute.

An alternative to passing Greeting as an attribute in the request object is to use the
jsp:param action to pass it as a parameter. In this case, the parameter is passed to the
destination JSP page as a string, just as if the destination JSP page received the
information after being requested via the HTTP post method.

By using parameters in the request object to pass information to b.jsp, you can write
b.jsp such that it can either respond to direct client requests, or be called from
another JSP.

Shown below is a.jsp using jsp:param to pass the Greeting parameter:

<jsp:include page="b.jsp" flush="true">
<jsp:param name="Greeting" value="Hello World" />

</jsp:include>

In b.jsp, you use the request.getParameter method to access the parameter:

The greeting from b is: <%=request.getParameter("Greeting")%>

The destination JSP page can write data back to the client using the JSP out object, just
as can the calling page. However, if the calling page’s output is buffered, then the
buffer is flushed prior to the call. This flush prevents the destination page from being
able to set response headers. For more information on buffering, see “Handling errors”
on page 93.

The destination page can also return information back to the calling page using the
request object. For example, the destination page could determine some value, then

92 Developing Applications with JRun
write it to the request object using the setAttribute method. Upon return of control
back to the calling page, the calling page could access that information using the
getAttribute method of the request object.

Buffering JSP output

By default, JRun buffers the output data sent from a JSP page to the client. Because of
buffering, response header information and other output is not sent to the client until
the buffer is flushed. This flush occurs when any of the following events occur:

• A JSP page calls another JSP page using the jsp:include action.

• The buffer become full. JRun automatically flushes the buffer when it becomes
full.

• You call the flush method of the out object.

In addition, the buffer is cleared, meaning the contents are discarded, if you call the
the jsp:forward action or redirect a request using the redirect method of the
response object. The only exception to this rule is that any cookies set by the
forwarding JSP page are not discarded but are sent to the client. If buffering is disabled,
you can still redirect a request, but only if you have not already written anything back
to the client.

Because of buffering, no operations that rely on headers are valid until the flush
method is executed and the headers are sent to the client.

Note Use the JSP page directive to disable buffering or to set the size of the
output buffer for a JSP page. For more information on the page directive,
see Chapter 8.

Using a tag library

JSP pages contain JSP tags and template text (typically HTML) and can optionally
contain custom tags from a tag library. A tag library allows tag developers to extend the
available tag set by implementing custom tags for use in their own JSP pages, for use
by others in the company, or for use by customers.

Use the taglib directive in a JSP page to declare a tag library used by the JSP page. As
part of the taglib directive, you specify the path to the tag library and the tag prefix
used in your page to identify the library. For example, the following statement defines
a tag library referenced by the prefix myTags:

<%@ taglib uri="/myApp/appTags" prefix="myTags" />

If JRun cannot locate a tag library, it generates a fatal translation error. An error also
occurs if you define another tag library in the JSP page that uses the myTag prefix.

After the taglib directive, you can reference the tags in the tag library using the
myTags prefix. The following statements use the coolTag from the tag library:

<myTags:coolTag>
...
</myTags:coolTag>

Chapter 7: Creating JSP Pages 93
A custom tag can have any of the forms of a standard HTML or JSP tag. That is, the tag
may take one or more required parameters, may take optional parameters, and may
allow you to specify a tag body. A tag library typically includes some form of
documentation describing the tags contained within it.

Creating a tag library

While you can use custom tags in a JSP page, you develop custom tags in Java using the
Servlet API Version 2.2 specification. Information on creating custom tags and tag
libraries is contained in Chapter 21.

Handling errors

Errors in a JSP page can occur at two different points in the JSP lifecycle:

• Translation from the JSP source file into the Java class file.

• Request processing by the JSP page.

This section describes how such errors are handled.

Translation Errors

Translation of a JSP page from the JSP source file to a Java class file initially occurs
when the Web server receives the first request for the file. Subsequent translations can
occur when JRun determines that the JSP source code file has been modified since the
last time that the page was translated.

Note You can enable or disable retranslation of a modified JSP page from the
JRun Management Console for each individual JSP page. For more
information, see the JRun Setup Guide.

Translation failures result in the client request failing with a corresponding error
message. For example, JRun returns an error status code of 500 (Server Error) upon
detecting a translation error.

Request Processing Errors

During the processing of a client request, a runtime error can occur either in the JSP
page .class file or in code called from the JSP page .class file. Request processing
errors are implemented using the Java programming language exception mechanism
and the JSP exception object to signal error.

Note The error representation format is independent of the scripting language
that you select for the JSP.

Request processing errors may be caught and handled in the JSP page that generates
them. However, you can also use the page directive to designate an error page, another
JSP page that handles the exception. In this case, any uncaught exceptions thrown
from a JSP page result in the forwarding of the exception and client request to the error

94 Developing Applications with JRun
page. If you do not specify an error page, the uncaught exception causes JRun to return
an error status code of 500 (Server Error) to the client.

A JSP page functioning as an error page must use the JSP page directive to set its
isErrorPage attribute. When a JSP page generating an error forwards that error to the
error page, it sets the JSP exception object of the error page to the generated error.

For more information on the page directive, see “The page directive” on page 102. For
more information on the exception object, see Chapter 9.

The following example creates a JSP page, errortest.jsp, that forwards exceptions to
an error page named errhand.jsp. The errortest.jsp page causes the exception by
attempting to include a JSP page that does not exist. The definition of errortest.jsp
is as follows:

<%@ page errorPage="errhand.jsp"%>
<html>
<head><title>Error Test Page</title></head>
<body>

<-- Cause exception by including a page that does not exist -->
<jsp:include page="xxxxx.jsp" flush="true"/>

</body>
</html>

The definition for errhand.jsp is as follows:

<%@ page isErrorPage="true" %>
<P>
<HR>There was an error.
<P>

<%-- Get and print the error message --%>
ERROR:

<%

String sErrMessage = exception.getMessage();
out.println(sErrMessage);

%>

<%-- Get and print a description of the exception --%>
DESCRIPTION:

<%

String sErrDescr = exception.toString();
out.println(sErrDescr);

%>

</body>
</html>

Using the JSP compilers

The JSP compiler is a Java tool used by JRun to compile JSP pages to Java class files.
JRun includes two versions of this compiler. The first version, the JSP compiler,

Chapter 7: Creating JSP Pages 95
performs the compilation when JRun handles a client request to a JSP page. The
second version, the JSPC compiler, is a command-line tool that lets you compile JSP
pages offline, meaning outside of the context of a Web server.

For more information on these compilers, see Chapter 10.

Upgrading from a Previous Release of JSP
JRun Version 3.0 implements the Version 1.1 JSP specification. However, you may have
JSP pages that were written for a previous version of the JSP specification (such as 0.92
or 1.0) that you want to upgrade to 1.1. For information on upgrading your JSP pages
from a previous JSP version see Chapter 12.

96 Developing Applications with JRun

C H A P T E R 8
Chapter 8 JSP Syntax
JSP pages are a combination of template data (typically text and HTML tags) and JSP
elements that are translated into servlets and executed on your Web server. The JSP
specification defines three types of JSP elements:

• Directives, which specify properties for the creation of a servlet from a JSP
file.

• Scripting elements, which manipulate objects and perform computations.

• Actions, which use, modify, or create objects or write to the page’s output
stream.

This chapter describes the basic syntax of JSP pages and also describes the syntax for
the three types of JSP elements.

Contents

• JRun Compatibility with the JSP 1.1 Specification .. 98

• Basic JSP Syntax.. 98

• Directives .. 101

• Scripting Elements ... 106

• Actions .. 108

98 Developing Applications with JRun
JRun Compatibility with the JSP 1.1 Specification
Allaire’s implementation of the JSP syntax is 100% compatible with the JavaServer
Pages specification, Version 1.1. Therefore, any JSP page conforming to the JavaServer
Pages specification is compatible with JRun’s page translation environment.

The information in this section is based on the “JavaServer Pages Specification,”
Version 1.1 from Sun Microsystems, Inc. You can obtain a copy of this specification at
http://java.sun.com/products/jsp.

Note that Allaire has extended the JSP specification to support additional
functionality, including the use of a global.jsa file. For more information on these
extensions, see Chapter 41, “JRun Extensions,” on page 443.

Basic JSP Syntax
This section describes basic JSP syntax. Included are the following sections:

• “Inserting JSP template text” on page 98

• “Using white space” on page 99

• “Placing start and end tags” on page 99

• “Quoting attribute values” on page 99

• “Escaping characters” on page 99

• “Inserting comments” on page 100

• “Specifying a relative URL within a JSP” on page 100

Inserting JSP template text

Typically, a JSP page contains both HTML text and JSP elements. The JSP elements are
interpreted by JRun. Any output from the JSP elements is returned back to the client
along with any HTML text.

In a JSP page, template text is any text that is outside of a JSP element and is therefore
not interpreted by JRun. Template text is sent directly back to the client without
modification. Any HTML text in a JSP page is considered template text.

For example, in the following page, everything in the page is considered template text
except the Java code contained between the <% and %> tags:

<html>
<head>
<title>Greetings</title>
</head>
<body>
<% for (int i=0; i < 5; i++) out.println("<h1>Hello World!</h1>"); %>
</body>
</html>

Chapter 8: JSP Syntax 99
Using white space

In HTML, white space is usually not significant. All white space in the JSP file
contained within the template code is returned to the client as it was entered in the JSP
file.

Placing start and end tags

JSP elements that have separate start and end tags, with an enclosed body, must have
both tags in the same file. You cannot put the start tag in one file and the end tag in
another.

For example, a JSP scriptlet has the syntax <% scriptlet %>. Both the opening tag (<%) and
the closing tag (%>) must be in the same file.

Quoting attribute values

You must quote attribute values, using either single or double quotes, to all JSP
elements. For example, the page element in the following example sets the MIME type
of a JSP page’s output to text/plain using the attribute contentType:

<%@ page contentType = "text/plain" %>

If the attribute value itself contains a single or double quote, you can precede the
quote with the escape character (\). The escape character causes the JSP parser to
ignore the next character. Use the following escape sequences for quotes in attributes:

• Escape ' as \'

• Escape " as \"

Alternatively, you can use the HTML character references for quotes. For example,
insert the character reference " rather than a double quote in the attribute value.

Escaping characters

The previous section describes how to escape quotes within attribute values. In
addition, you may need to escape characters in other areas of a JSP page, including the
following:

• Scripting Elements

A literal %> is escaped by %\>

• Template Text

A literal <% is escaped by <\%

• Attribute Values

A %> is escaped by %\>

A <% is escaped by <\%

100 Developing Applications with JRun
Inserting comments

You can use two types of comments in JSP page: comments for the JSP page itself,
which are not sent back to the client, and comments that are written back to the client
as part of the page’s output.

This section describes both types of comments.

Writing comments for the JSP

A JSP comment is intended to add information to the JSP page itself. This comment is
not output to the client as part of the JSP page’s output.

A JSP comment has the following syntax:

<%-- Comment string... --%>

You can also add a comment using the comment syntax of the page’s scripting
language. For example, if you are using Java as the page’s scripting language, you can
add comments in the following form:

<% /** a Java comment **/ %>

Use a similar syntax for comments in scripts written in JavaScript.

Outputting comments to the client

To generate comments that appear in the response output of the JSP returned to the
client, use the HTML comment syntax. This syntax is as follows:

<!-- comments -->

You can make a comment dynamic by including a JSP expression within it. The next
example outputs a comment string to the client containing an expression evaluated at
run time:

<%! String PageName = "Example Comment Page"; %>
...
<!-- Comment for the page: <%= PageName %> -->

Specifying a relative URL within a JSP

JSP elements can use relative URL specifications to reference other JSP pages, Java
servlets, or other entities from within the page. Depending on how you specify the URL
in the referencing JSP page, it can be relative to either the application containing the
referencing JSP or the location of the referencing JSP.

For example:

• myErrorPage.jsp

References myErrorPage.jsp relative to the location of the referencing JSP. In
this case, JRun would look for myErrorPage.jsp in the same directory as the
referencing page.

Chapter 8: JSP Syntax 101
• ../myErrorpage.jsp

References myErrorPage.jsp relative to the location of the referencing JSP. In
this case, JRun would look for myErrorPage.jsp in the parent directory of the
referencing page.

• /errorPages/myErrorpage.jsp

Prefixing the reference with "/" causes JRun to look for myErrorpage.jsp
relative to the application containing the referencing JSP. All JSP pages are
contained within an application. As part of configuring the application, you
must define the directory mapped to "/".

Directives
Directives set properties for the JSP page and for the resulting servlet. Examples of
information defined by directives include the scripting language of the JSP page, its
output MIME type, any tag libraries used by the page, and any include files required by
the page.

One common use of a directive is to set the scripting language of the JSP page. By
default, the page uses Java. However, you can use the following directive to set the
scripting language to JavaScript:

<%@ page language = "javascript" %>

A directive is a preprocessing element evaluated during the parsing of a JSP page.
Because JRun evaluates directives at parse time, you cannot use expressions within
directives because expressions are evaluated at run time. Therefore, the following
example usage of the directive is incorrect because the expression <%=myVar%> cannot
be evaluated at compile time:

<%@ page import="<%=myVar%>" %>

In addition, because directives are evaluated at parse time, they produce no output.
That is, you cannot use directives to return information back to the client.

The basic syntax of all JSP directives has the following form:

<%@ directive %>

JSP supports the three directives shown in the following table. These directives are
described in the following sections.

JSP Directives

Directive Purpose Syntax Page

page Defines page-wide
attributes

<%@ page attribute="value" ... %> page 102

102 Developing Applications with JRun
The page directive

The page directive defines one or more attributes for the entire JSP page.

A JSP page can contain multiple page directives; however with the exception of the
import attribute, you can only reference each attribute once. That is, if you specify
multiple page directives with conflicting attributes, the first instance of the page
directive in the JSP page is recognized, any subsequent attempts to redefine the
attribute is ignored.

You can specify multiple page directives containing the import attribute. All files
referenced by the import attribute are imported.

The syntax for the page directive is as follows:

<%@ page attribute = "value" ... %>

where:

attribute = language | import | contentType | session | buffer |
autoflush | isThreadSafe | info | errorPage | isErrorpage | extends

value = a string literal in single or double quotes.

A page directive containing any other attribute causes an exception.

For example, the following directive sets the output MIME type of a JSP page to HTML
and the scripting language to JavaScript:

<%@ page contentType = "text/html" language = "javascript" %>

language
Defines the scripting language used in the file. If you omit this attribute, the
default scripting language is java (for the Java programming language).

Acceptable values include: java and javascript.

import
Specifies a comma-delimited list of packages that the compiled page will need to
import for use. For example:

<%@ page import = "java.io.*,java.util.Hashtable" %>

include Inserts text into a JSP
page

<%@ include file = "path" ... %> page 105

taglib Includes a tag library
into a JSP page

<%@ taglib uri="tagLibraryURI"
prefix="tagPrefix" %>

page 105

JSP Directives

Directive Purpose Syntax Page

Chapter 8: JSP Syntax 103
If the language of the JSP page is Java, JRun always imports the following files in
addition to any files specified by import:

• java.lang.*

• javax.servlet.*

• javax.servlet.jsp.*

• javax.servlet.http.*

A default import list does not exist for languages other than Java. You must import
the necessary files for your scripting language if you do not use Java, or if you use
Java and require a different set of imported files.

contentType
Defines the MIME type and, optionally, the character set of the response
generated by the JSP page. By default, the MIME type is text/html and the
character set is ISO-8859-1.

The syntax of this attribute is as follows:

<%@ page contentType = "TYPE; charset = CHARSET" %>

TYPE specifies the output MIME type and CHARSET optionally specifies the
character set as an Internet Assigned Numbers Authority (IANA) value.

See the following URL for a list of possible MIME types:

ftp://ftp.isi.edu/in-notes/iana/assignments/media-types/media-types

You can see a list of the supported character encodings for CHARSET at the
following URL:

http://java.sun.com/products/jdk/1.1/docs/guide/intl/
encoding.doc.html

Following is an example of contentType that sets the output type to plain text:

<%@ page contentType = "text/plain" %>

session
Specifies that the page is accessed as part of a session.

A value of "true" specifies that the JSP object session is initialized to the current
session for the page.

A value of "false" specifies that the page is not part of session and that the
session object is unavailable. Any reference to session within the body of the JSP
page results in a fatal translation error.

The default value is "true".

buffer
Specifies the buffering model for the page output. You must include the string
"kb" in the size specification. For example, the directive sets thebuffer size to 16
KiloBytes:

<%@ page buffer = "16kb" %>

104 Developing Applications with JRun
A value of "none" specifies that there is no buffering, and all page output is written
directly to the client.

If you specify a buffer size, the output is buffered with a buffer size not less than
that specified. Depending on the value of the autoFlush attribute, either the
contents of the buffer are automatically flushed, or an exception is raised when an
overflow would occur.

The default value of this attribute is buffered with a buffer size of 8 KiloBytes.

autoFlush
Specifies whether the buffered output should be flushed automatically (value
equals "true") when the buffer is filled, or that an exception is raised (value
equals "false") to indicate buffer overflow.

The default value is "true". Note that you cannot set autoFlush to "false" when
buffer equals "none".

isThreadSafe
Specifies the level of thread safety implemented by the page.

If you set this attribute to "false", JRun creates multiple instances of the page to
handle multiple requests, and each page instance has a single thread.

If you set this attribute to "true", JRun may choose to dispatch multiple
outstanding client requests to the page simultaneously. If you specify "true" you
ensure that your JSP page properly synchronizes access to the page’s shared state.

The default value is "true".

info
Specifies a string incorporated into the JSP page that can be obtained at run time.
An application can access this string using the getServletInfo() method for the
Servlet object representing this servlet.

isErrorPage
Specifies that the JSP page handles uncaught exceptions from another JSP page.

A value of "true" specifies that the JSP exception object is defined, and its value
is set to the exception from the source JSP page when the JSP page is invoked.

A value of "false" specifies that the exception object is unavailable, and any
reference to it within the body of the JSP page results in a fatal translation error.

The default value is "false".

errorPage
Specifies a URL to a JSP page to which any exceptions not caught by the page are
forwarded for error processing. The destination JSP page must comply with the
Version 1.1 JSP specification.

The destination page must use the page directive to set the isErrorPage attribute
to "true".

Chapter 8: JSP Syntax 105
When invoked, the destination JSP page’s exception object contains a reference
to the exception.

Note If you set autoFlush to true, and if any output data from the page
throwing the exception has been flushed, then an attempt to pass
the exception to an error page may fail.

extends
Specifies a Java base class that the JSP subclasses. For example:

<%@ page extends = "com.myPackage.AServletImplementation" %>

By default, JRun creates servlets as a subclass of the class
javax.servlet.http.HttpServlet. Therefore, you should not use this attribute
unless you have a specific reason for defining the base class of the servlet.

The include directive

The include directive inserts text into a JSP file at translation time, effectively
replacing the include directive. The result of this directive is a single JSP page
containing both the contents of the including JSP page and the contents of the
included JSP page.

The syntax for this directive is as follows:

<%@ include file = "path" %>

If path begins with "/", then the path is relative to the JSP page’s application. If the
path omits a leading "/", the path is considered relative to the path of the JSP page
being translated. For more information on the path, see “Specifying a relative URL
within a JSP” on page 100.

The include directive is useful when you have common functionality shared among
several JSP pages. For an example of the include directive, see “Performing an
include” on page 88.

The taglib directive

The taglib directive declares a tag library included by the JSP page. Tag libraries
contain custom tags that you can use in your JSP page.

The following example defines a tag library containing the tag coolTag. After this
directive, you can reference the tags in this tag library using the myTags prefix. An error
occurs if you define another tag library in the JSP page that uses the myTag prefix.

<%@ taglib uri="myApp/appTags" prefix="myTags" />

<myTags:coolTag>
...
</myTags:coolTag>

A fatal translation-time error occurs if JRun cannot find coolTag in the tag library.

106 Developing Applications with JRun
The taglib directive has the following syntax:

<%@ taglib uri="path" prefix="tagPrefix" %>

uri
Specifies the location of the tag library as either a relative path location or as a
lookup key into the web.xml file associated with an application. JRun firsts checks
the web.xml file to determine if the path is a lookup key. If path is not found in the
web.xml file, JRun assumes that it is a path location.

If JRun cannot locate the tag library, a fatal translation error occurs.

If path is a lookup key into the web.xml file, JRun locates the key in the web.xml file
and the associated tag library. For example, the following definition in an
application’s web.xml file defines a lookup key named myTagLib and the
associated location of the tag library:

<taglib>
<taglib-uri>myTagLib</taglib-uri>
<taglib-location>/WEB-INF/tlibs/myTagLib.tld</taglib-location>
</taglib>

If path is a relative path identifying the tag library, and if it begins with "/", then
the path is relative to the JSP page’s application. If the path omits a leading "/", the
path is considered relative to the path of the JSP page being translated. For more
information on the path, see “Specifying a relative URL within a JSP” on page 100.

prefix
Defines the prefix string that distinguishes a custom tag in the library. The prefixes
jsp, jspx, java, javax, servlet, sun, and sunw are reserved. Empty prefixes are
illegal.

Scripting Elements
Scripting elements define the actual code contained within a JSP page. This code can
be written in Java or JavaScript (ECMAscript).

The exact syntax of the code within a scripting element is defined by the scripting
language that you specify for your JSP page using the JSP page directive. For more
information on setting the scripting language, see “The page directive” on page 102.

Chapter 8: JSP Syntax 107
JRun supports the three scripting elements shown in the following table. These
elements are described in the following sections.

Declarations

A declaration allows you to make page-wide definitions within a JSP page. A
declaration is typically used to define variables or methods used in your JSP page.
Declarations do not write any output back to the client.

The syntax for a declaration is as follows:

<%! declaration(s) %>

The following declaration defines a Java variable and function:

<%!
private String foo = null;
public String getFoo() { return this.foo; }

%>

Scriptlets

The scriptlet element specifies the scripting code used by the JSP page. Any valid code
can be specified within the body of the scriptlet element.

Scriptlets can write data to the output stream of the JSP page. This information is then
returned with the HTTP response to the client. Typically, this data is in the form of
HTML text.

The code within a scriptlet has full access to the implicit objects defined for a JSP page,
such as application, session, etc. For more information on these objects, see
Chapter 9.

You can use the language attribute of the page directive to specify the scripting
language as either Java or JavaScript (ECMAScript). By default, the language is Java.
For more information, see “The page directive” on page 102.

The general syntax for the scriptlet element is as follows:

<% script code %>

JSP Scripting Elements

Element Purpose Syntax

declaration Creates page-wide definitions such as
variables

<%! declaration %>

scriptlet Contains the scripting code for the page <% script code %>

expression Defines statements evaluated on the server
before sending the page output to the
client

<%= expression %>

108 Developing Applications with JRun
The following is an example of embedded Java code:

<%
String greeting = request.getParameter("Greeting");
out.println(greeting);

%>

Expressions

Expressions are statements evaluated on the server before sending the page output to
the client. The result of an expression has the data type of string.

An expression has full access to the implicit objects defined for a JSP page such as
application and session. For more information on these objects, see Chapter 9.

The syntax for an expression is as follows:

<%= expression %>

In the following example, the two expressions output the values of the two variables as
strings:

<table>
<tr>
<td><%= myVar1%></td>
<td><%= myVar2%></td>
</tr>
</table>

Actions
Actions use, modify, or create objects or modify the page’s output stream. This section
describes all actions supported by JRun.

The following table lists all actions.

Action Elements

Element Name Purpose Page

jsp:useBean Defines an instance of a Java bean. page 109

jsp:setProperty Sets the value of one or more properties in a bean. page 111

jsp:getProperty Writes the value of a bean property as a string to
the implicit out object.

page 112

jsp:include Calls one JSP page from another. Upon completion,
the destination page returns control back to the
calling page.

page 113

Chapter 8: JSP Syntax 109
jsp:useBean

The jsp:useBean action instantiates a Java bean in a JSP page. Once instantiated, you
can then reference the bean in the JSP file.

In the following example, you define a bean named myBean of type
com.myco.myapp.MyBean:

<jsp:useBean id="myBean" class="com.myco.myapp.MyBean" />

The basic syntax of jsp:useBean is as follows:

<jsp:useBean id="name" scope="page|request|session|application"
typeSpec />

where typespec is any one of the following:

class="className" |
class="className" type="typeName" |
beanName="beanName" type=" typeName" |
type="typeName"

You must specify either type or class; it is not valid to specify both class and
beanName. If you specify both type and class, then class must be assignable to type.

The attribute beanName is the name of a bean, in the form "a.b.c", which may be
either a class or the name of a resource in the form "a/b/c.ser".

Additionally, you can specify a body to jsp:useBean in the form:

<jsp:useBean id="name" scope="page|request|session|application"
typeSpec >
body

</jsp:useBean>

The body is invoked if the bean is created. Typically, the body will contain either
scriptlets or jsp:setProperty tags used to modify the newly created bean; but the
content of the body is not restricted.

The <jsp:useBean> tag has the following attributes:

jsp:forward Calls one JSP page from another. Execution of the
calling page is terminated by the call.

page 114

jsp:param Adds parameters as name/value pairs to an HTTP
request when you forward the request from one JSP
page to another.

page 114

jsp:plugin Enables you to invoke an applet on a client browser. page 115

Action Elements (Continued)

Element Name Purpose Page

110 Developing Applications with JRun
id

Specifies the name used to identify the bean in the specified scope, and also the
scripting variable name for the bean. The specified name is case sensitive and
must conform to the scripting language’s variable-naming conventions.

scope
Optionally defines the scope within which the bean is available. The default value
is page.

• page: The bean is available from the current page.

• request: The bean is available from the current page’s request object using the
getAttribute method. This reference is discarded upon completion of the
current client request.

• session: The bean is available from the current page’s session object using the
getValue method. This reference is discarded upon invalidation of the current
session.

Caution A fatal translation error occurs if you specify session scope when
the JSP page has used the page directive to specify that it does not
participate in a session.

• application: The bean is available from the current page’s application
object using the getAttribute method.

class
Sets the fully qualified name of the class that defines the implementation of the
bean. The class name is case sensitive.

If you omit the class and beanName attributes the object must be present in the
specified scope.

beanName
Specifies the name of a bean, as recognized by the instantiate method of the
java.beans.Beans class.

This attribute can accept a request-time attribute expression as a value.

type
If specified, type defines the type of the scripting variable. The bean must be an
instance to the specified type.

This attribute allows the type of the scripting variable to be distinct from, but
related to, that of the specified implementation class. The type is required to be
either the class itself, a superclass of the class, or an interface implemented by the
specified class.

If you omit this parameter, the type is the same as the value of the class attribute.

Chapter 8: JSP Syntax 111
jsp:setProperty

The jsp:setProperty action sets the value of one or more properties in a bean. The
bean must be defined, using jsp:useBean, before using this action.

The following example sets a value for properties for a bean named user:

<jsp:setProperty name="user" property="user" param="username" />

The following example sets a property using an expression:

<jsp:setProperty name="results" property="row" value="<%= i+1 %>" />

Simple and indexed properties can be set using setProperty. When you assign values
to indexed properties, the value must be an array.

The syntax for jsp:setProperty is as follows:

<jsp:setProperty name="beanName" prop_expr />

where prop_expr has one of the following forms:

property="*" |
property="propertyName"|
property="propertyName" param="parameterName"|
property="propertyName" value="propertyValue"

propertyValue must be either a string literal or an expression.

The jsp:setProperty element has the following attributes:

name
The name of a bean as defined by a jsp:useBean action or some other element.
The bean instance must contain the property that you want to set. The
jsp:useBean element must appear before the jsp:setProperty action in the
same file.

property
The name of the bean property that you want to set.

If you set propertyName to *, then jsp:setProperty iterates over the current
request parameters to match parameter names and value type(s) to bean property
names and types. Each matched property is set to the value of the matching
parameter. If a parameter has a value of an empty string (""), the corresponding
property is not modified.

Each of the first three forms of prop_expr assign a value represented as a string to
the bean property. However, if the bean property has a data type other than

112 Developing Applications with JRun
string, JRun performs a type conversion. The following table shows how this
conversion works.

The fourth form of prop_expr shown previously assigns an object to the bean
property. In this case, JRun automatically converts the object to the destination
data type of the bean property.

param
The name of the request parameter whose value you want to give to a bean
property.

An action may not have both a param and a value.

If you omit param, the request parameter name is assumed to be the same as the
bean property name.

If param is not set in the request object, or if it has the value of the empty string
(""), the jsp:setProperty element has no effect.

value
The value to assign to the property.

An action may not have both a param and a value.

jsp:getProperty

Writes the value of a bean property as a string to the out object. The bean must be
defined before you use this action.

The following example writes the name property of the user bean:

<jsp:getProperty name="user" property="name" />

String Type Conversions in jsp:setProperty

Property Type Conversion

boolean or Boolean As defined by java.lang.Boolean.valueOf(String)

byte or Byte As defined by java.lang.Byte.valueOf(String)

char or Character As defined by java.lang.Character.valueOf(String)

double or Double As defined by java.lang.Double.valueOf(String)

int or Integer As defined by java.lang.Integer.valueOf(String)

float or Float As defined by java.lang.Float.valueOf(String)

long or Long As defined by java.lang.Long.valueOf(String)

Chapter 8: JSP Syntax 113
The syntax for this action is as follows:

<jsp:getProperty name="name" property="propertyName" />

name
Specifies the name of the bean instance for the property.

This action generates an exception if the bean is not found.

property
Name of the property whose value you want to output.

jsp:include

Includes static and dynamic resources in the current page. Processing resumes in the
calling JSP once the inclusion is completed.

By default, JRun buffers the output data sent from the JSP page to the client. Because of
buffering, response header information and other output is not sent to the client until
the buffer is flushed. If the including page’s output is buffered, then the buffer is
flushed prior to the inclusion. This flush prevents the included page from being able to
set response headers. Therefore, the included page cannot use methods such as
setCookie.

Note Use the JSP page directive to disable buffering or to set the size of the
output buffer for a JSP page. For more information on the page directive,
see “The page directive” on page 102.

The following example includes an HTML page:

<jsp:include page="/templates/copyright.html"/>

The syntax for jsp:include is as follows:

<jsp:include page="path" flush="true"/>

or:

<jsp:include page="path" flush="true">
<jsp:param name="paramName" value="paramValue" /> ...

</jsp:include>

page
Specifies the path of the included file. If path begins with "/" then the path is
relative to the JSP page’s application. If the path omits a leading "/", the path is
considered relative to the path of the JSP page being translated.

For more information on the path, see “Specifying a relative URL within a JSP” on
page 100.

flush
If you set this attribute to "true," the buffer is flushed. A "false" value is not
valid in JSP 1.1.

The default value is "true".

114 Developing Applications with JRun
The second form of the jsp:include shows the addition of the jsp:param action. This
action enables you to add parameters to the HTTP request received by the destination
JSP page. For more information, see “jsp:param” on page 114.

jsp:forward

The jsp:forward action calls a JSP page or a Java Servlet in the same application as the
current page. A jsp:forward terminates the execution of the current JSP page.

If the page output is buffered, the buffer is cleared, meaning the contents are
discarded, if you call the jsp:forward action or redirect a request using the redirect
method of the response object. The only exception to this rule is that any cookies set
by the forwarding JSP page are not discarded but are sent to the client.

If the page output is unbuffered and anything has been written to it, an attempt to use
jsp:forward results in an IllegalStateException.

Note Use the JSP page directive to disable buffering or to set the size of the
output buffer for a JSP page. For more information on the page directive,
see “The page directive” on page 102.

The following example calls one JSP page from another:

<% String whereTo = "/templates/"+someValue; %>
<jsp:forward page=’<%= whereTo %>’ />

The syntax for jsp:forward is as follows:

<jsp:forward page="path" />

or:

<jsp:forward page="path">
<jsp:param name="paramName" value="paramValue" /> ...

</jsp:forward>

page
Specifies the path of the invoked file. If path begins with "/" then the path is
relative to the application containing the JSP page. If the path omits a leading "/",
the path is considered relative to the path of the JSP page being translated.

For more information on the path, see “Specifying a relative URL within a JSP” on
page 100.

The second form of the jsp:forward shows the addition of the jsp:param action. This
action lets you add parameters to the HTTP request received by the destination JSP
page. For more information, see “jsp:param” on page 114.

jsp:param

The jsp:param action adds parameters as name/value pairs to an HTTP request when
you forward the request from one JSP page to another. You can use this action only
with the jsp:include, jsp:forward, and jsp:plugin actions.

Chapter 8: JSP Syntax 115
When using jsp:param with jsp:include or jsp:forward, the destination page
receives the original HTTP request with the original request parameters and any new
parameters specified by jsp:param. If jsp:param adds a parameter that already exists
in the request, the new parameter value is prepended to the existing one.

For example, if the request contains the parameter myParm=a, and you use jsp:param
to add myParm=b, the forwarded request contains myParm=b, a. Note that the new
param appears first in the list.

The scope of the new parameters is the destination JSP page of the jsp:include or
jsp:forward. That is, the new parameters and values are removed from the request
after the return to the original JSP page from the included page.

jsp:plugin

The jsp:plugin action enables you to invoke an applet on a client browser. This action
generates HTML text containing the appropriate client-browser dependent constructs
(OBJECT or EMBED) that result in the download of the Java plugin and subsequent
execution of an applet or bean.

This element is replaced by either an <object> or <embed> tag, as appropriate for the
requesting user agent, and emitted into the output stream of the response. The
following example invokes MyPlugin.class on the client:

<jsp:plugin type=applet code="MyPlugin.class" codebase="/html" >
<jsp:params>

<jsp:param name="myplugin" value="Greetings"/>
</jsp:params>
<jsp:fallback>

<p> unable to load Plugin </p>
</jsp:fallback>

</jsp:plugin>

The syntax for jsp:plugin is as follows:

<jsp:plugin
type="bean|applet"
code="objectCode"
codebase="objectCodebase"
{ align="alignment" }
{ archive="archiveList" }
{ height="height" }
{ hspace="hspace" }
{ jreversion="jreversion" }
{ name="componentName" }
{ vspace="vspace" }
{ width="width" }
{ nspluginurl="url" }
{ iepluginurl="url" } >
{ <jsp:params>

{ <jsp:param name=" paramName" value="paramValue" /> }+
</jsp:params> }
{ <jsp:fallback> arbitrary_text </jsp:fallback> } >

</jsp:plugin>

116 Developing Applications with JRun
The elements in brackets ({}) are optional.

type
Identifies the type of the component as either a bean or applet.

code
Specifies either the name of the class file that contains the applet or the path to the
class.

codebase
Specifies the base path used to resolve any relative paths specified by the archive
attribute. If you omit this attribute, the default value is the base path of the JSP
page.

For more information, see the HTML 4.0 specification at the following URL:

http://www.w3.org/TR/REC-html40/

align
Specifies the position of a bean or applet. The following values for align
determine the object’s position with respect to surrounding text:

• bottom: The bottom of the object is vertically aligned with the current baseline.
This is the default value.

• middle: The center of the object is vertically aligned with the current baseline.

• top: The top of the object is vertically aligned with the top of the current text
line.

• left and right: The image floats to the current left or right margin.

For more information, see the HTML 4.0 specification at the following URL:

http://www.w3.org/TR/REC-html40/

archive
Specifies a space-separated list of URIs for archives containing resources for the
object. Preloading archives will generally result in reduced load times for objects.
Archives specified as relative URIs are interpreted relative to the codebase
attribute.

For more information, see the HTML 4.0 specification at the following URL:

http://www.w3.org/TR/REC-html40/

height
Overrides the default bean or applet height to use the specified value. You can
specify a values as:

• The integer number of pixels, in the form N

• A percentage of the available vertical space, in the form N%

• A portion of the available vertical space, in the form N*

For more information, see the HTML 4.0 specification at the following URL:

Chapter 8: JSP Syntax 117
http://www.w3.org/TR/REC-html40/

hspace
Specifies the amount of white space to be inserted to the left and right of a bean or
applet. You can specify a values as:

• The integer number of pixels, in the form N

• A percentage of the available horizontal space, in the form N%

• A portion of the available horizontal space, in the form N*

For more information, see the HTML 4.0 specification at the following URL:

http://www.w3.org/TR/REC-html40/

jreversion
Identifies the specification version number of the JRE that the component
requires in order to operate; the default is: "1.1".

name
Specifies a name for the applet, making it possible to reference the applet from
JavaScript or for another applet on the same page.

vspace
Specifies the amount of white space to be inserted above and below a bean or
applet. You can specify a values as:

• The integer number of pixels, in the form N

• A percentage of the available horizontal space, in the form N%

• A portion of the available horizontal space, in the form N*

For more information, see the HTML 4.0 specification at the following URL:

http://www.w3.org/TR/REC-html40/

title
Specifies descriptive information about the applet.

For more information, see the HTML 4.0 specification at the following URL:

http://www.w3.org/TR/REC-html40/

width
Override the default object width of a bean or applet to use the specified value.
You can specify a values as:

• The integer number of pixels, in the form N

• A percentage of the available horizontal space, in the form N%

• A portion of the available horizontal space, in the form N*

For more information, see the HTML 4.0 specification at the following URL:

http://www.w3.org/TR/REC-html40/

118 Developing Applications with JRun
nspluginurl
Specifies the URL where JRE plugin can be downloaded for Netscape Navigator.
The default is implementation defined.

iepluginurl
Specifies the URL where JRE plugin can be downloaded for Internet Explorer. The
default is implementation defined.

jsp:param
Specifies parameters to the Applet or JavaBeans component. For more
information, see “jsp:param” on page 114.

jsp:fallback
Specifies the content displayed by the client browser if the plugin cannot be
started. If the plugin can start but the Applet or JavaBeans component cannot be
found or started, a plugin-specific message is sent to the user.

C H A P T E R 9
Chapter 9 JSP Page Object Reference
All scripting languages that you can use within a JSP page are required to provide
access to certain objects built into Java and into the Java Servlet API. Access to these
objects means that you can call object methods and access data stored within them.
This chapter describes these objects and how to access them when writing JSP pages.

Contents

• JSP Objects.. 120

• The application Object .. 122

• The config Object ... 123

• The exception Object ... 123

• The out Object .. 124

• The pageContext Object .. 124

• The request Object ... 125

• The response Object .. 126

• The session Object ... 127

120 Developing Applications with JRun
JSP Objects
This section describes the objects that you can access from within a JSP page. You can
use these objects to perform basic tasks within a JSP page, including:

• request object: The HTTP request sent to the JSP page from the client.
Included in the HTTP request are any name/value pairs in the request header.

• response object: The HTTP response object generated by the JSP page. You can
use the response object to return information back to the client, including
name/value pairs in the response header and cookies.

• out object: The output stream written back to the client. Any HTML text output
by the JSP page is typically written to the out object for interpretation by the
client.

Note This chapter contains only an overview of these objects. For a complete
description of each object and its methods, refer to the HTML version of
the Java Servlet API documentation. These HTML files are located in the
docs/api directory under your JRun installation directory. Identify each
object by the Java Servlet API object type as listed in the following table,
not the JSP object name.

JSP objects are actually implemented as objects from the Java Servlet API. JSP objects
provide you with a shorthand mechanism for accessing these Java Servlet API objects.

The following table lists each JSP object and defines the corresponding type of the
object in the Servlet API.

JSP Object and Corresponding Servlet API Object

JSP Object Object Type in the Java Servlet API What It Represents

application javax.servlet.ServletContext The servlet context obtained from the
servlet configuration object

config javax.servlet.ServletConfig The ServletConfig for the JSP page

exception java.lang.Throwable The uncaught exception that resulted in the
error page being invoked

out javax.servlet.jsp.JspWriter An object that writes into a JSP page’s
output stream

pageContext javax.servlet.jsp.PageContext The page context for the JSP

request javax.servlet.HttpServletRequest The client request

response javax.servlet.HttpServletResponse The response to the client

session javax.servlet.http.HttpSession The session object created for the
requesting client

Chapter 9: JSP Page Object Reference 121
Obtaining access to the JSP objects

Whenever JRun invokes a JSP page, it creates all of the JSP objects listed in the table
from the previous section. To access these objects in a JSP page, you simply refer to the
object name and any object method or field.

Note The session object is created only if you have enabled session tracking.
The exception object is created only if the JSP page uses the page
directive to set isErrorPage set to "true". For more information, see
“The page directive” on page 102.

Using the JSP objects

The interface to a Java object consists of the object’s public methods and fields. To use
the objects described in this chapter, you therefore reference a method or field of the
object.

To reference a method or field of an object, use the dot addressing mechanism. That is,
you specify the object name, followed by a dot (a period), then the method or field
name. The following example uses this syntax to write a string to a JSP page’s output:

out.println("Greetings from my page!");

In this example, the object name is out, and the method is println.

The following example uses the request object to obtain the value of two parameters,
fName and lName, included in the HTTP request to the JSP page. It then uses the out
object to write these value back to the client.

<%
String firstName = request.getParameter("fName");
String lastName = request.getParameter("lName");
out.println("Welcome " + firstName + " " + lastName);

%>

The next example takes the user name from the request and writes it to the JSP page’s
session object so that other JSP pages in the same session can access the information.
This type of example shows how you can personalize your application to display the
client’s name on all pages serviced by a JSP page.

In the first JSP page, greeting.jsp, you write the user’s name to the session object:

<%
String firstName = request.getParameter("fName");
String lastName = request.getParameter("lName");
session.setAttribute("fName", firstName);
session.setAttribute("lName", lastName);
out.println("Welcome " + firstName + " " + lastName);

%>

Note The request methods that you use to access parameters passed from the
client are called getParameter and setParameter. However, the
methods for the session object are called getAttribute and
setAttribute. Parameters are passed to and from clients as strings.

122 Developing Applications with JRun
Attributes are objects that are passed as objects among server-side
scripts, such as servlets.

Once you have written information to the session object, other JSP pages in the same
session can access it. For example, a JSP page that generates an order total could
contain the following lines:

<%
String firstName = (String) session.getAttribute("fName");
String lastName = (String) session.getAttribute("lName");
out.println("Welcome " + firstName + " " + lastName);

%>

Notice that the casting of the return value of getAttribute is required because
getAttribute always returns an object of type java.lang.Object. The cast converts
the returned object from getAttribute to the destination format—in this case, a
string.

The application Object
You can use the application object to share information among all users of a given
application. A JSP-based application is defined as all of the .jsp files in a virtual
directory and its subdirectories.

Syntax

application.Method(variables…)

The following table lists some common methods of the application object.

Methods of the application object

Method Description

getAttribute(String name) Returns the attribute with the specified name. This
method returns null if an attribute by that name does
not exist.

getAttributeNames() Returns the name of each attribute within the
application object.

getInitParameter(String name) Returns the value of an initialization parameter.
Returns null if the parameter does not exist.

getInitParameterNames() Returns the name of each initialization parameter.

getServerInfo() Returns the name and version number of the JRun
servlet engine.

Chapter 9: JSP Page Object Reference 123
The config Object
The config object is generated by the JRun JSP container to pass configuration
information to a servlet when the servlet is initialized. The configuration information
that this servlet can access is a set of name/value pairs that describe initialization
parameters and the ServletContext object, which describes the context within which
the servlet is running.

Syntax

config.Method(variables…)

The following table lists some common methods of the config object.

The exception Object
The exception object represents all errors and exceptions.

Syntax

exception.Method(variables…)

The following table lists some common methods of the exception object.

Methods of the config object

Method Description

getInitParameter(String name) Returns the value of an initialization parameter.
Returns null if the parameter does not exist.

getInitParameterNames() Returns the name of each servlet initialization
parameter.

getServletName() Returns the name of the servlet.

Methods of the exception object

Method Description

getMessage() Returns a string containing the error message.

printStackTrace() Writes the exception object and its backtrace to standard error.

toString() Returns a string describing the exception object.

124 Developing Applications with JRun
The out Object
The out object defines an object for writing to the JSP page’s output stream.

Syntax

out.Method(variables…)

The following table lists some common methods of the out object.

The pageContext Object
The pageContext object provides a mechanism for storing information local to the JSP
page. Each JSP page has its own pageContext object that is created when the page is
entered and destroyed when the page exits. Methods of the pageContext object allow
you to access information about the JSP page and to perform other actions.

Syntax

pageContext.Method(variables…)

Methods of the out object

Method Description

clear() Clears the output buffer without writing the contents to the client.
This method throws an exception if the buffer has ever been flushed.

clearBuffer() Clears the output buffer without writing the contents to the client.

flush() Flushes the buffer by writing the contents to the client.

getBufferSize() Returns the size of the buffer in bytes and 0 if the output is
unbuffered.

getRemaining() Returns the number of empty bytes in the buffer.

isAutoFlush() Returns "true" if the output buffer is flushed automatically.

newLine() Writes a newline character to the output.

print() Writes out a value to the output with no newline character.

println() Writes out a value to the output including a newline character.

Chapter 9: JSP Page Object Reference 125
The following table lists some common methods of the pageContext object.

The request Object
The request object retrieves the values that the client passes to the Web server during
an HTTP request.

Syntax

request.Method(variables…)

The following table lists some common methods of the request object.

Methods of the pageContext object

Method Description

findAttribute(String name) Returns the value of an attribute in the page,
request, session (if valid), and application
scope(s). Returns null if the attribute is not found.

getAttribute(String name) Returns the object associated with the name in the
page scope. Returns null if no object is found.

removeAttribute(String name) Removes the attribute with the specified name.

setAttribute(String name,
java.lang.Object attribute)

Writes the object with the associated name into the
pageContext object.

Methods of the request object

Method Description

getCookies() Returns all cookies sent by the client with the
request.

getHeader(String name) Returns the value of a request header as a string.

getAttribute(String name) Returns the value of the attribute. Returns null if the
attribute does not exist.

getAttributeNames() Returns the name of each attribute in the request.

getHeaderNames() Returns all header names in the request.

getHeaders(String name) Returns all values of the specified request header.

getMethod() Returns GET, POST, or PUT corresponding to the
HTTP method used to make the request.

126 Developing Applications with JRun
The response Object
The response object sends data to the client.

Syntax

response.Method(variables…)

The following table lists some common methods of the response object.

getParameter(String name) Returns the value of a parameter in the request.
Returns null if the parameter does not exist.

getParameterNames() Returns the name of each parameter in the request.

getParameterValues(String name) Returns all values of the specified parameter.

getQueryString() Returns the query string from the request.

getRequestURI() Returns the URL of the request from the protocol
name up to the query string.

getServletPath() Returns the part of the request URL that calls the
servlet.

setAttribute(String name,
java.lang.Object o)

Writes an attribute and associated value to the
request.

Methods of the request object (Continued)

Method Description

Methods of the response object

Method Description

addCookie(Cookie cookie) Writes a cookie to the response.

addHeader(String name,
String value)

Writes header as a name/value pair to the response. If
the header exists, the value is added to the existing
header values.

containsHeader(String name) Returns "true" if the named response header has
already been set.

Chapter 9: JSP Page Object Reference 127
The session Object
The session object stores information for a particular user-session. Variables stored in
the session object are not discarded when the user jumps between pages in the
application; instead, these variables persist for the entire user session.

JRun automatically creates a session object when any page from the application is
requested by a user who does not already have a session. The Web server destroys the
session object when the session expires or is abandoned.

Note Session state is only maintained for browsers that support cookies.

Syntax

session.Method(variables…)

The following table lists some common methods of the session object.

sendError(int sc) Sends an error response to the client containing the
specified status code.

setHeader(String name,
String value)

Sets a response header with the given name and
value. If the header already exists, the value replaces
any current value(s) for the header.

Methods of the response object (Continued)

Method Description

Methods of the session object

Method Description

getAttribute(String name) Returns the object with the specified name. Returns
null if no object is found.

getAttributeNames() Returns the name of each object in this session.

getCreationTime() Returns the time when the session was created in
milliseconds since midnight January 1, 1970 GMT.

getId() Returns the unique identifier for the session.

getLastAccessedTime() Returns the time of the last client request associated
with this session. The time is returned is the number of
milliseconds since midnight January 1, 1970 GMT.

getMaxInactiveInterval() Returns the maximum amount of time, in seconds, that
JRun keeps this session open between client accesses.

128 Developing Applications with JRun
removeAttribute(String name) Removes the attribute and value from the session.

setAttribute(String name,
java.lang.Object value)

Writes an attribute and value to the session.

Methods of the session object (Continued)

Method Description

C H A P T E R 1 0
Chapter 10 JSP Compilation
A compiler is the tool used by JRun to compile JSP pages into Java class files. JRun
ships with two versions of this compiler: The JSP compiler and the JSPC compiler.
The first version, the JSP compiler, performs compilation when a Web client requests
a JSP page.

The second version, the JSPC compiler, enables you to compile JSP pages from a
command line. The JSPC compiler is useful when you want to precompile JSP pages
before deploying your application. Precompiling increases system performance
because JRun does not need to compile the page upon the initial client request.

This chapter provides an overview of both compilers.

Contents

• The JSP Compiler ... 130

• The JSPC Compiler... 133

130 Developing Applications with JRun
The JSP Compiler
As part of translating a JSP page into a Java servlet, JRun first converts the JSP page into
a Java source file. Then, it compiles the Java source file into a Java .class file. This
section explains how to configure the JSP compiler used by JRun.

For information on the JRun command-line compiler, the JSPC compiler, see “The
JSPC Compiler” on page 133.

Setting JSP compiler properties

JRun ships with the jikes compiler from IBM. By default, JRun uses the jikes
compiler to compile JSP pages into Java .class files. However, you can specify a
different compiler, or modify the properties of the default compiler, using the JRun
Management Console (JMC).

In JRun, you configure the compiler at the Web application level. That is, you can
specify a different compiler for each Web application.

To configure the JSP compiler, you use the server-name > Web Applications >
app-name > JavaServer Pages > Java compiler property in the JMC, where
server-name is the name of the JRun JVM hosting the Web application and app-name is
the application name. The Java compiler property specifies the command line,
including the Java compiler, used to compile JSP pages to Java .class files.

Note If the Java compiler property is blank, JRun compiles JSP pages in-
process using the Sun javac compiler.

An example command lines follows:

javac -nowarn -classpath %c -d %d %f

The value of the Java compiler property must contain three parameter placeholders:
%c, %d, and %f. JRun replaces these placeholders with the following values:

• %c specifies the compiler’s classpath setting, and is a combination of the
following:

• The value of the JRun classpath variable. You can set this path using
the JMC.

• The path of the WEB-INF\classes directory for the Web application
containing the JSP page.

• The path to the .jar files in the WEB-INF\lib directory of the Web
application.

You can add your own directories to the classpath by including them in the
command line as shown in the following example:

javac -nowarn -classpath \myclasses, %c -d %d %f

• %d is replaced by the directory path where compiled files are generated.

• %f is replaced by the Java filename corresponding to the JSP page.

Chapter 10: JSP Compilation 131
The following example shows how to specify the Microsoft compiler:

jvc /cp:c %c /dest: %d %f

By specifying the Microsoft compiler, you can implement code that allows efficient use
of the underlying Windows environment. Page compilation documents containing
COM objects can be successfully compiled independent of the type of virtual machine
on which the JRun servlet engine is running. However, in order to successfully run the
compiled page that utilizes COM objects, JRun must run on top of the Microsoft Java
Virtual Machine (JVM).

Because the JSP compilation phase is independent of the run-time environment of the
Web application, you may use one vendor’s compiler and another’s JVM. Therefore, if
you are developing on the Windows platform and want to use jview rather than javac
to compile documents, you can still have the documents run on top of the Windows
JVM as long as the compiled pages do not reference any COM objects.

Bypassing JSP page compilation

JRun compiles a JSP page to create the page’s .class file when the page is initially
requested by a client or when a requested JSP page has been modified since its last
request. However, in a deployed application, you may want to bypass compilation to
force JRun to always load the page’s .class file.

You bypass the compilation of a JSP page for several reasons, including:

• Performance: Compilation of static JSP pages adds unnecessary processing
overhead to your application.

• Security: JSP pages are text files that can be read and edited by anyone using the
application. If you bypass JSP page compilation, you do not need to ship the JSP
pages that make up the application; you instead ship only the corresponding
.class files.

The JSP compilation process

The following figure shows the steps JRun performs when it receives a request for a JSP
page:

The following steps describe the actions that JRun performs when a JSP page is
requested:

1. The JSP page (.jsp file) is parsed to produce Java source code (.java file).

2. The Java source code is compiled into a Java class (.class file).

132 Developing Applications with JRun
3. The class is loaded into memory on the Web server.

4. The servlet is run.

When JRun compiles a JSP page, it records the modification time of the page. Upon the
next request for the page, JRun performs a dependency check to determine if the
page’s modification time has changed. If the time has not changed, JRun bypasses the
compilation in Steps 1 and 2 because a JSP page does not need to be recompiled if it
has not been modified since its last compilation. If the modification time of the JSP
page is different from the last time that the page was compiled, JRun recompiles the
page by performing Steps 1 through 4.

Recompilation of modified JSP pages is necessary during application development
because you frequently edit and modify JSP pages as you develop, debug, and test
them. At application deployment time, however, your JSP pages are typically static and
no longer subject to modification.

Automatically bypassing JSP page compilation

By default, when JRun receives a request for a JSP page, JRun checks for the existence
of the page’s .jsp file. If the .jsp file does not exist, JRun automatically checks for the
page’s .class file. If found, JRun loads and executes the .class file.

Therefore, if you have JSP pages that are static, meaning you do not expect to modify
them, you can compile them once to create the page’s .class file, then delete the .jsp
file. JRun then automatically loads the page’s .class file.

Note Make sure that you first compile the JSP page to create its .class file
before deleting it. The next section describes two different methods to
ensure that the page is compiled.

Disabling JSP page compilation

To explicitly disable JSP page compilation, use the JMC to modify the JRun servlet that
handles JSP pages. You make this setting at the Web application level so that you can
enable or disable compilation for individual Web applications.

Use the following procedure to disable JSP compilation:

1. In the JMC, select the server-name > Web Applications > app-name > Servlet
URL mappings property. The corresponding form opens in the right side of the
JMC.

2. In the form, click the edit button to open the edit dialog box.

3. Under the Virtual Path/Extension column, enter *.jsp.

4. Under Servlet Invoked, enter jsprt.

The jsprt servlet will now be used to handle every request to a JSP page. This servlet
does not check for the existence of the JSP page but instead looks only for the
corresponding .class files. Therefore, in a deployed Web application, you do not need
to actually deploy the JSP pages. Because JSP files are source code files, you can omit
your source code from deployed applications.

Chapter 10: JSP Compilation 133
Disabling JSP page compilation is a an optimization that you typically make only at
application deployment time. With compilation turned off, you must ship the
corresponding .class files for all JSP pages. Therefore, you must precompile all JSP
pages to create the .class files before you deploy the application. You perform
precompilation in two ways:

• With JSP page compilation enabled, request every JSP page in your application.
Requesting the JSP pages guarantees that every JSP page has been compiled
and has a corresponding .class file.

The drawback to this method is that you must manually make the request of
each JSP page. Omitting a single JSP page will cause an error if a client requests
the page and the page has not been compiled.

• Use the JSPC compiler to compile all JSP pages from the command line.

The JSPC compiler allows you to compile all JSP pages associated with an
application with a single command. This method guarantees to compile all JSP
pages. For more information on the JSPC compiler, see “The JSPC Compiler” on
page 133.

Reenabling JSP page compilation

To reenable JSP page compilation, use the following procedure:

1. In the JMC, select the server-name > Web Applications > app-name > Servlet
URL mappings property. The corresponding form opens in the right side of the
JMC.

2. In the form, click the edit button to open the edit dialog box.

3. For the entry corresponding to jsprt, select Delete. JRun now uses the default
servlet, jsp, to handle JSP pages. This servlet recompiles any servlet whose
modification time differs from that of the page’s corresponding .class file.

The JSPC Compiler
The JSPC compiler is a command-line tool that you use to compile JSP pages outside
the context of a Web server. With the JSPC compiler, you can explicitly compile JSP
pages from a command line, rather than using JRun to compile them upon a request of
the JSP page.

Note The JSPC compiler is the same compiler as used by JRun to compile JSP
pages. The only difference is that you invoke the JSPC compiler from a
command line.

You may want to compile your own servlets for several reasons. For example, during
the development phase of your JSP page, you may find it faster to fix errors by explicitly
compiling your pages, rather than by triggering the compilation through a Web
request of the page. Or, for security reasons, you may want to disable JSP page
compilation and distribute only the binary .class files rather than your text-based
.jsp files.

134 Developing Applications with JRun
JSPC compiler requirements

You need the following software for the JSPC compiler:

• JRun Version 3.0 or later

• A JDK 1.1.6 or later, or Microsoft’s SDK.

Invoking the JSPC compiler

You invoke the JSPC compiler using the following command:

java [-classpath classpath]
JSPC [-vghn]
[-d output_directory]
[-docroot web_server_docroot]
[-compiler "compiler_spec"]
JSP_path

classpath
Optionally specifies the classpath to the java command. You can specify it either
on the command line or by using the CLASSPATH environment variable. The
following paths must be specified in the classpath:

• All .jar files in the directory <JRun home dir>\lib

• All .jar files in the directory <JRun home dir>\lib\ext

• Depending on your compiler, you may have to specify additional files shipped
with your JDK

v
Specifies to output the name of each JSP file as the JSPC compiles it.

g
Specifies to output debug messages.

h
Specifies to output the JSPC compiler help message.

n
Specifies to compile only JSP pages that are newer than the corresponding .class
file.

d
Optionally specifies where you want the JSPC compiler to write the output .class
and .java files. By default, this directory is set to the current working directory.

Typically, you specify the WEB-INF\jsp directory under the directory structure of a
Web application.

Chapter 10: JSP Compilation 135
docroot
Optionally specifies the document root directory where JSP files are located in the
deployed application. By default, this directory is set to the current working
directory.

Typically, this directory is the root directory of the Web application.

compiler
Optionally specifies a quoted string containing the compiler and compiler settings
to use for the compile. If you omit this parameter, JRun compiles JSP pages in-
process using the Sun javac compiler. For more information on setting the
compiler, see “The JSP Compiler” on page 130.

You use the same format for specifying the compiler here as described in “The JSP
Compiler” on page 130. For example:

java JSPC -compiler "javac -nowarn -classpath %c -d %d %f" ...

or:

java JSPC -compiler "jvc /cp:c %c /dest: %d %f" ...

JSP_path
Specifies the physical path of the JSP page on your file system relative to the
directory specified by -docroot. You can specify multiple files, separated by
spaces. You can use wildcard symbols to specify multiple files.

The directory specified by -docroot and the JSP_path are combined to specify the
JSP page compiled. For example, if -docroot is set to c:\myapps\store and the
JSP page that you want to compile is named is c:\myapps\store\my.jsp, the
JSP_path for the page is my.jsp.

You can include wildcard symbols in the JSP_path if you are compiling multiple
JSP pages.

JSPC compiler examples

The following example compiles the page foo.jsp, which is part of a Web application
with the document root directory at c:\myapps\store. This example also includes a
specification for the compiler, overriding the default JRun compiler. In this example,
the CLASSPATH environment variable contains the settings required to execute the
JSPC compiler.

java JSPC -d c:\myapps\store\WEB-INF\classes
-docroot c:\myapps\store
-compiler "C:\jrun\bin\jikesw -classpath %c -d %d %f"
foo.jsp

If you were in the directory c:\myapps\store when you executed this command, you
could execute it as:

java JSPC -d WEB-INF\classes
-compiler "C:\jrun\bin\jikesw -classpath %c -d %d %f"
foo.jsp

136 Developing Applications with JRun
In this example, the document root (-docroot) and the destination directory (-d)
default to the current directory. Therefore, you can specify the destination directory
using a relative path and omit -docroot.

The following example compiles multiple JSP pages using the default JRun compiler.
Note that the JSP_path uses wildcards:

java JSPC -v -d WEB-INF\classes *.jsp store*.jsp

C H A P T E R 1 1
Chapter 11 JSP Examples
This chapter contains several common examples of JSP pages.

Contents

• Handling a Request and Generating a Response... 138

• Calling One JSP from Another... 138

• Tracking a Session .. 140

• Using the Application Object .. 143

• Using a Tag Library... 144

138 Developing Applications with JRun
Handling a Request and Generating a Response
The most basic action of a JSP page is to accept a request, extract any parameters from
that request, and generate a response. The JSP page in this example takes two request
parameters containing a name and an account balance. The page then outputs a
message to the client based on the input balance.

The request URL for this example is as follows:

http://localhost/example1.jsp?bal=222.45&fName=Steven

Place the JSP page for this example, example1.jsp, in the document root directory of
your Web server. The contents of example1.jsp are as follows:

<html>
<head><title>Balance Example</title></head>
<body>
<p>
<h1> Do you have enough?</h1>

<%-- Get paramaters from the request object --%>
<% String firstName = request.getParameter("fName"); %>
<% String balance = request.getParameter("bal"); %>

<%-- Convert the bal paramater from String to double --%>
<% double accountBalance = Double.valueOf(balance).doubleValue(); %>

<%-- Output results --%>
Balance for <%=firstName %>: <%=accountBalance %>

<%-- Is balance high enough? --%>
<% if(accountBalance <= 100.00) { %>

 Get a Job.

<% } %>

</body>
</html>

The conversion of the input parameter bal to a double is required because all request
parameters are passed as strings. In this example, you want to perform conditional
logic on the balance as represented by a double.

Calling One JSP from Another
You will often create an application made up of multiple JSP pages. When writing JSP
pages that call other pages, you must make two decisions that control how you make
the call:

• How will you pass information between the two JSP pages?

Chapter 11: JSP Examples 139
The example in this section uses the JSP request object to share information
among JSP pages. You use the request object when the information is
important only to the request currently being processed and is not required to
persist beyond the request. Later examples use the JSP session and
application objects to pass information among JSP pages when the
information has to persist beyond a single request.

• Will you expect the called JSP page to return control back to the calling JSP
page?

If the destination page executes to completion and then returns control back to
the calling page, use the jsp:include action to make this call.

If the calling page transfers control to the destination page and then
terminates, the destination page does not return control back to the calling
page. In this case, use the jsp:forward action to make this call.

This example is a modification of the previous example, “Calling One JSP from
Another” on page 138. In this example, the JSP page example2.jsp uses the
jsp:include action to call example2a.jsp if the input balance is less than $100.00. To
pass parameters from example2.jsp to example2a.jsp, you use the JSP request
object. Shown below is example2.jsp:

<html>
<head><title>Balance Exmaple</title></head>
<body>
<p>
<h1> Do you have enough?</h1>

<%-- Get paramaters from the request object --%>
<% String firstName = request.getParameter("fName"); %>
<% String balance = request.getParameter("bal"); %>

<%-- Convert the bal paramater from String to double --%>
<% double accountBalance = Double.valueOf(balance).doubleValue(); %>

<%-- Output results --%>
Balance for <%=firstName %>: <%=accountBalance %>

<%-- Is balance high enough? --%>
<% if(accountBalance <= 100.00) { %>

<% request.setAttribute("needsJob", "true"); %>
<jsp:include page="example2b.jsp" flush="true"/>

<% } %>

</body>
</html>

The JSP page example2a.jsp obtains the input parameters from the request object,
then conditionalizes its output based on those parameters. Shown below is the
contents of example2a.jsp:

<html>
<body>

140 Developing Applications with JRun
<p>

<%-- Get paramaters from the request object --%>
<% String jobStatus = (String) request.getAttribute("needsJob"); %>

<%-- Is balance high enough? --%>
<% if("true".equals(jobStatus)) { %>
You need a job.

<h2>Available positions include:</h2>
Software Engineer

QA

Technical Writer

<% } %>

</body>
</html>

Tracking a Session
The HTTP protocol is stateless, meaning that by definition a Web server does not have
the ability to track a client across multiple request/responses. However, JRun supports
a session tracking mechanism that allows a Web site to store information in order to
track a client across multiple request. Information is not discarded when the client
jumps between pages in the application; instead, this information persists for the
entire user session.

You use the JSP session object to store information for a particular user-session. Data
stored in the session object is not discarded when the user jumps between pages in
the application; instead, this information persists for the entire user session.

When enabled, JRun automatically creates a session object when any page from the
application is requested by a user who does not already have a session. The Web server
destroys the session object when the session expires or is abandoned.

One JSP page can write information to the session object that can then be accessed by
other JSP pages requested by the client. For example, you may assign an identifier to a
user’s shopping cart that lets your Web site access information about the shopping
cart whenever the client adds, removes, or modifies the cart’s contents. This identifier
can be stored in the session object.

JRun uses cookies to track sessions. Therefore, a client’s browsers must support
cookies for this example to work. To enable and disable JRun session tracking, use the
JRun Management Console. For more information on controlling session tracking, see
the JRun Setup Guide.

The next example uses three JSP pages. The first page, example3a.jsp, takes the name
and account balance from a URL request and writes that information to the session
object. This information is then available to all other JSP pages accessed by the client.

The example3a.jsp page displays two links that the client can use to access other JSP
pages. One link lists investment options, while the other lists available jobs. The
request URL for this example is as follows:

Chapter 11: JSP Examples 141
http://localhost/example3a.jsp?bal=222.45&fName=Steven

The following figure shows the output of example3a.jsp for this URL.

Shown below is example3a.jsp:

<html>
<head><title>Session Example</title></head>
<body>
<p>
<h1> Where will your balance take you?</h1>

<%-- Get paramaters from the request object --%>
<% String firstName = request.getParameter("fName"); %>
<% String balance = request.getParameter("bal"); %>

<%-- Convert the bal paramater from String to double --%>
<% double accountBalance = Double.valueOf(balance).doubleValue(); %>

<%--
Write input paramaters to the session object
The session object cannot store a double.
You must first convert it to a Double.

--%>
<%

session.setAttribute("userName", firstName);
Double tempAccountBalance = new Double(accountBalance);
session.setAttribute("userBalance", tempAccountBalance);

%>

<%-- Output results --%>
Balance for <%=firstName %>: <%=accountBalance %>

Would you like to invest your money?.

142 Developing Applications with JRun

Do you need a job.

</body>
</html>

The example3b.jsp page examines the client’s name and balance from the session
object and either offers investment options or prompts the client to get a job:

<html>
<body>

<%-- Get name from the session object --%>
<% String fName = (String) session.getAttribute("userName"); %>

<h2>Hi <%=fName %> </h2>

<%-- Get balance and convert to double --%>
<%

Double tempBal = (Double) session.getAttribute("userBalance");
double accountBalance = tempBal.doubleValue();

%>

<%-- Got enough money too invest? --%>
<% if(accountBalance > 100.00) { %>

Your balance of $<%= accountBalance %> is sufficient for investing.
We offer a number of investment opportunities, including:

Bonds

CDs

Mutual funds

<% } %>

<%-- Is balance too low? --%>
<% if(accountBalance <= 100.00) { %>

Your balance is too low for investing. It looks like you need a job.
<% } %>

</body>
</html>

The example3c.jsp page greets the user using the name passed in the session object
and lists available jobs:

<html>
<body>

<%-- Get paramaters from the session object --%>
<% String fName = (String) session.getAttribute("userName"); %>

<h2>Hi <%=fName %></h2>

<h2>Available positions include:</h2>
Software Engineer

QA

Chapter 11: JSP Examples 143
Technical Writer

</body>
</html>

Using the Application Object
The previous example described how to use the JSP session object to track
information about a client across multiple HTTP requests. Another object, the
application object, lets you track information about an entire application. The
information in the application object is accessible by any JSP page within the
application.

You typically use the application object to share information among all users of a
given application. For example, you can store default information in the application
object that is available to all JSP pages within the application.

The following example, index.jsp, sets two parameters in the application object.
You use index.jsp to set these parameters because that page is typically the entry
point for a client into a Web application.

<%-- Define application-level settings --%>
<%

application.setAttribute("appName", "Application Object Example");
application.setAttribute("counter","0");

%>

<HTML>
<BODY>
<H1>Application Object Example </H1>

<h2>Display the default application settings</h2>
<%--

Access or modify application parameters from this
or any other JSP page in the application.

--%>
<% String appName = (String) application.getAttribute("appName"); %>
The name of this application is "<%= appName %>"

<% String counter = (String) application.getAttribute("counter"); %>
The counter value = <%= counter %>

</BODY>
</HTML>

JRun also allows you to use the JRun Management Console (JMC) to set initialization
parameters in the application object. Initialization parameters are written to the
application object when a client makes the first request to any component of the
application. When using the JMC to set initialization parameters, you use the
application.getInitparamater method to access them.

144 Developing Applications with JRun
To set initialization parameters in an application object, use the following command
in the JMC to open the application variables editor:

<server_name> > Web Applications > <app_name> > Application Variables

For this example, define two parameters:

• Set the initialization parameter appName to My Application

• Set the initialization parameter counter to 0

The following example, index.jsp, access these initialization parameters:

<HTML>
<BODY>
<H1>Application Object Example </H1>

<h2>Display the default application settings</h2>
<%--

Access or modify application parameters from this
or any other JSP page in the application.

--%>
<% String appName = (String) application.getInitParameter("appName"); %>
The name of this application is "<%= appName %>"

<% String counter = (String) application.getInitParameter("counter"); %>
The counter value = <%= counter %>

</BODY>
</HTML>

Using a Tag Library
A tag library allows you to use custom tags within a JSP page. To define the tag library,
you use the taglib directive in your JSP page. Once you have defined the tag library,
you can then access its tags.

JRun ships with an example tag library in the <jrun home dir>/servers/lib/
jruntags.jar file. You can use this tag library within any Web application running on
any JRun server by inserting the following statement in a JSP file:

<%@ taglib uri="jruntags" prefix="tagLibPrefix" %>

where tagLibPrefix is the user-defined prefix for the tags in the JRun tag library.

The global.properties file contains a mapping that allows you to reference the
jruntags.jar file using the above taglib directive. You can create a similar mapping
for your own custom tag library to make it available to all Web applications on all JRun
servers, or add the mapping to the local.properties file for a specific JRun server to
make the tag library available to the Web applications on that server.

This example uses two tags from the demo tag library: form and input. These tags
allow you to create an HTML form and to validate that the client has input the proper
values into the form.

Chapter 11: JSP Examples 145
In this example, the JSP page example5.jsp verifies that the client enters a string into
the First Name field and a floating point value into the Balance field. If the client
enters an invalid value, these tags will display an error message and then allow the
client to re-enter the values. The following figure shows the output of example5.jsp.

The example5.jsp file contains the following code:

<html>
<head><title>Tag Library Example</title></head>
<body>
<p>
<h1>Validate input balance using a tag library</h1>

<%-- Define the tag libray and tag prefix for library tags --%>
<%@ taglib uri="jruntags" prefix="mylib" %>

<h2>Enter your name and balance</h2>

<%--
Use the tag mylib:form to define a form with two inputs.
For each input, define its input type. For First Name, the type is
text. For Balance, the type is float. If the client enters an invalid
value, display an error message. If the input is correct, pass a
request to example5a.jsp.

--%>
<mylib:form name="form1" action="example5a.jsp">
First name: <mylib:input name="fName" type="text" required="true" />
Balance: <mylib:input name="bal" type="float" required="true" />
<input type="submit" value="submit">
</mylib:form>

</body>
</html>

On submit, the form data is then sent to the file example5a.jsp. That file then obtains
the form information from its request object.

146 Developing Applications with JRun

C H A P T E R 1 2
Chapter 12 Upgrading JSP Pages
This version of JRun contains full support for the JSP Version 1.1 specification. This
chapter describes how to upgrade a JSP page from a previous version of the JSP
specification.

Contents

• Upgrading from a Previous Release .. 148

• Upgrading from Version 1.1 PR1 ... 148

• Upgrading from Version 1.1 PD1 .. 148

• Upgrading from Version 1.0 .. 149

• Upgrading from Version 0.92 .. 149

148 Developing Applications with JRun
Upgrading from a Previous Release
This section describes how to upgrade JSP pages from a previous version of the JSP
specification.

The information in this section comes from the “JavaServer Pages Specification,”
Version 1.1, Public Release 2, from Sun Microsystems, Inc. You can obtain a copy of
this specification at http://java.sun.com/products/jsp.

Upgrading from Version 1.1 PR1
This section describes the changes to the JSP specification from Version 1.1 PR1 to
Version 1.1 PR2.

Changes to the specification

• A tag handler is now a JavaBean component, and attributes are properties that
have been explicitly marked as attributes in the TLD.

• The type subelement of attribute in the TLD is now defined by the type of the
corresponding JavaBean property, and has been removed from the TLD.

• The names of the DTDs have changed to reflect that JSP and Servlets have a
separate release vehicle to J2EE. The new names are web-
jsptaglibrary_1_1.dtd and web-app_ 2_2.dtd.

• Divided the Tag abstract class into two interfaces and two support classes.

• Specified that a compiled JSP page should be packaged with its support classes.

Upgrading from Version 1.1 PD1
This section describes the changes to the JSP specification from Version 1.1 PD1 to
Version 1.1 PR1.

Additions to the specification

• Added a Tag Library Descriptor (TLD) file

• Added new parameters to jsp:include and jsp:forward.

• Added JspException and JspError classes.

• Added a parent field to the Tag class to provide a runtime stack.

• Added pushBody and popBody methods to PageContext.

• Added a precompilation protocol.

• Reserved all request parameters in the form jsp*.

Chapter 12: Upgrading JSP Pages 149
Changes to the specification

• The class BodyEvaluation is now called BodyJspWriter and it is a subclass of
JspWriter.

• Tag is now an abstract class; TagSupport has been removed. NodeData is now
called TagDat a.

• Split the doBody method into doBeforeBody and doAfterBody.

• There is only at most one BodyJspWriter per invocation of the action
regardless of how many times the body is evaluated.

• The return type of doStartTag is now an int.

• Added initialize and release methods to Tag class.

Deletions to the specification

• Removed the flush=false option in jsp:include.

Upgrading from Version 1.0
This section describes the changes to the JSP specification from Version 1.0 to Version
1.1 PD1.

Additions to the specification

• Enabled the compilation of JSPs into Servlets that can be transported from one
JSP engine to another.

• Added a portable tag extension mechanism.

• Flush is now an optional attribute of jsp:include.

Changes to the specification

• jsp:plugin no longer can be implemented by just sending the contents of
jsp:fallback to the client.

Upgrading from Version 0.92
Most of the JSP specification was rewritten or has changed significantly since version
0.92. JRun 3.0 supports the JSP 1.0 specification. Review the following sections for
information on upgrading any existing JSP 0.92 files to run within JRun 3.0.

150 Developing Applications with JRun
Changes to the Specification

The following changes were made to the 0.92 specification:

• SSI tags have been replaced with the <%@ include directive

• Tags are case sensitive.

• Standard tags now follow the mixed-case convention from the Java Platform.

• jsp:setProperty and jsp:getProperty have been defined.

• <SCRIPT> </SCRIPT> is replaced by <%! ... %>.

• Tags now just mean the actual tag in the elements, as in start, end, and empty
tags. The use of the terms elements and tags is now consistent with that in
HTML, XML, SGML, etc.

Removals from the specification

The following items were removed from the 0.92 specification:

• NCSA-style SSIs are no longer mentioned explicitly in the specification.

Additions to the specification

The following additions were made to the 0.92 specification:

• A jsp:request action element has been added.

• A jsp:include action element has been added to provide run-time inclusion
of static resources.

• jsp:plugin has been defined.

• Buffering has been added.

• The page directive collects several attributes. The extends attribute of the page
directive corresponds to functionality removed in 0.92.

C H A P T E R 1 3
Chapter 13 Using Server-Side Include Files
This chapter describes Server-Side Include (SSI) files and support for these files in
JRun.

Contents

• Using Server-Side Includes (SHTML Files) .. 152

• Servlet Tag... 152

• Include Tag.. 153

152 Developing Applications with JRun
Using Server-Side Includes (SHTML Files)
Server-Side Includes (SSI) are one way that JRun provides dynamic content to a Web
page. SSI are tags defined to be used and processed on the Web server rather than by
the client browser. A file with an extension of .shtml is a text file containing a mixture
of SSI tags and HTML.

Although Web servers do not need JRun to support SHTML files, JRun adds support for
two new tags that you can use within your SHTML files:

• The <servlet> tag, which calls a servlet from an SHTML file.

• The <include> tag, which includes the contents from another file in an SHTML
file.

Servlet Tag
The general syntax for calling a servlet through the <servlet> tag follows:

<servlet name="aliasname" code="classname">
<param name="paramname1" value="paramvalue1"/>
<param name="paramname1" value="paramvalue1"/>
<param name="paramname1" value="paramvalue1"/>
...

</servlet>

Use either the name attribute or the code attribute, but not both. The <param> tags are
optional. They enable you to pass extra parameters to your servlets. Note that these are
regular parameters, not initialization parameters. The servlet’s initialization
parameters are fetched from the information that you set for the servlet using the JRun
Management Console (discussed in the JRun Setup Guide).

A good way to experiment with the <servlet> tag is to use it with the SnoopServlet
supplied with JRun. SnoopServlet displays information about the HTTP connection
between the client and server, and also displays any parameters passed to it.

To begin, follow these steps:

1. Create a new text file and enter the following:

<servlet name="SnoopServlet">
<param name="greeting" value="Hello World"/>
<param name="anotherParam" value="aParamValue"/>

</servlet>

2. Save the text file as greeting.shtml in your Web server’s document root, e.g., c:\
inetpub\wwwroot.

3. Request greeting.shtml from your Web browser. The URL should be something
like http://<your_host_machine>/greeting.shtml.

You may modify greeting.shtml by changing, adding, or removing parameter. Once
you have saved any changes in greeting.shtml, request the page again through your
Web browser to view the changes.

Chapter 13: Using Server-Side Include Files 153
Include Tag
You use the <include> tag within an SHTML file to include contents of another file.
The general example for using the <include> tag follows:

<!--#include virtual|file=”filename”-->

You must specify either the virtual keyword or file keyword to indicate the type of
path that you are using to include the file. Replace filename with the path and
filename of the file that you want to include.

Included files do not require a special filename extension.

Using the virtual keyword

Use the virtual keyword to indicate a path beginning with a virtual directory. For
example, if a file named footer.inc resides in a virtual directory named /myapp, the
following line would insert the contents of footer.inc into the file containing the line:

<!--#include virtual=”myapp/footer.inc”-->

Using the file keyword

Use the file keyword to indicate a relative path. A relative path begins with the
directory that contains the including file. For example, if you have a file in the directory
myapp, and the file header1.inc is in myapp/headers, the following line would insert
header1.inc into your file:

<!--# include file=”headers/header1.inc”-->

Note The path to the included file, headers/header1.inc, is relative to the
including file. If the script containing this include statement is not
located in the directory /myapp, the statement will not work.

154 Developing Applications with JRun

C H A P T E R 1 4
Chapter 14 Presentation Templates
This chapter describes presentation templates and support for these files in JRun.

Contents

• Using Presentation Templates (THTML Files)... 156

• Using default.template .. 156

• Using default.definitions ... 157

• File Locations ... 158

156 Developing Applications with JRun
Using Presentation Templates (THTML Files)
JRun adds a new type of server-side scripting file support to your Web server:
presentation templates. Presentation templates enable you to seamlessly apply a
constant “look and feel” to HTML applications. Presentation template files are
identified by the extension of .thtml.

THTML files are HTML-based pages with only a head and body. When a THTML file is
requested, the JRun template servlet processes the THTML file by replacing certain
tags within a common template file with the text in the head and body tags in the
THTML file.

The name of the template file is default.template. The default.template file
defines and contains the common look and feel for all THTML files that use it.

In addition to the required default.template file, you may use the optional
default.definitions file to define values for names used in special substitution tags.

Using default.template
The default.template file contains a mixture of HTML and the special substitution
tag, <subst>. The <subst> tag is a marker replaced by the text assigned to the name
that the <subst> tag represents. For example, suppose that the THTML file
greeting.thtml contains the following <head> and <body> tags:

<head>
<title>Greetings from greeting.thtml</title>
</head>
<body>
Hello World from greeting.thtml
</body>

And suppose the default.template file for this example contains the following:

<html>
<head>
<subst data="head"/>
</head >
<body>
A greeting from the requested document: <subst data=”body”/>

</body>
</html>

The JRun template servlet would produce the following resulting document:

<html>
<head>
<title>Greetings from greeting.thtml</title>
</head >
<body>
A greeting from the requested document: Hello World from greeting.thtml

</body>
</html>

Chapter 14: Presentation Templates 157
As demonstrated here, the occurrences of the <subst data=”head”> and <subst
data=”body”> tags defined in the default.template file have been replaced with the
contents of the <head> and <body> tags in the THTML file, respectively.

You can use either of the following forms of the <subst> tag:

<subst data="[name]"/>
<subst data="[name]"></subst>

Set name to the name of the data to be substituted in. The value of the given name would
replace its corresponding <subst> tag in the resulting output to the client.

You are not restricted to applying substitutions only for the <head> and <body> tags.
Values for additional named substitutions can be defined and used within
default.template files as specified in the default.definitions file.

Note In order for a THTML file to be served properly, a default.template file
must be accessible. The rules for the accessibility of default.template
files that apply to THTML files are described in “File Locations” on page
158.

Using default.definitions
The default.definitions file is a property file containing name/value pairs. You use
this file to define values for names that may be used for substitution in <subst> tag.
The following example illustrates how to assign name/value pairs in the
default.definitions file:

MyThought=<P>Missing sweet San Diego</P>
TodaysSaying=Anger is a gift…(Rage Against The Machine)

MyLineBreaks=<PRE>A line break follows
\nHeres a new line</PRE>

Each name/value pair must exist on the same line unless the newline is escaped using
the backslash “\” character. (The backslash must proceed the newline if values take up
more than one line.) Newlines that must exist in the value themselves can be specified
with the “\n”, as in the third name/value pair. The rules for specifying name/value
pairs are the same rules that apply in the definition of the java.util.Properties
class.

Once name/value pairs have been set in the default.properties file, the
default.template file may use them within the <subst> tag. For example:

<html>
<head>
<subst data="head"/>
</head >
<body>
A greeting from the requested document: <subst data=”body”/>

Here’s a thought: <subst data=”MyThought”/>
Here’s a saying: <subst data=”TodaysSaying”/>
Line Breaks: <subst data=”MyLineBreaks”/>
</body>
</html>

158 Developing Applications with JRun
If greeting.thtml is requested, and if the above default.template and
default.definitions files are available, then the server will produce the following
resulting document:

<html>
<head>
<title>Greetings from greeting.thtml</title>
</head >
<body>
A greeting from the requested document: Hello World from greeting.thtml

Here’s a thought: <P>Missing sweet San Diego</P>
Here’s a saying: Anger is a gift…(Rage Against The Machine)

Line Breaks: <PRE>A line break follows

Heres a new line</PRE>

</body>
</html>

If the default.template file contains <subst> tag for which there are no name/value
pairs available, then the <subst> tag is replaced with a blank string in the resulting
page. The default.definitions file is not required when requesting a THTML file.

Based on the file location, more than one default.definitions file may exist for a
default.template file. For more information, see the next section.

File Locations
The name/value pairs defined in the default.definitions file apply to all THTML
files in the same directory and its subdirectories. If more than one
default.definitions file exists in a directory hierarchy, the THTML file uses the
default.definitions file closest to it and up the directory hierarchy.

The name/value pairs of default.definitions files are cumulative relative to the
location of the THTML file. Thus name/value pairs can be added to the current set of
name/value pairs, but additions are only available to THTML files in the same
directory and its subdirectories.

The name/value pairs defined by one default.definitions file can be overwritten by
name/value pairs in a default.definitions file in a subdirectory. The overwriting of
name/value pairs affects only the THTML files in the same directory and in
subdirectories of where the default.definitions file that does the overwriting
resides. So, if a default.definitions file in c:/foo/ defines drinks=cola, and if
another default.definitions file in c:/foo/bar/ defines drinks=milk, then only the
THTML files under c:/foo/bar/ and its subdirectories know drinks=milk. The
THTML files in c:/foo/ know drinks=cola.

The available scope of the default.template file applies to all THTML files existing in
the same directory and its subdirectories. If more than one default.template file
exists in a directory hierarchy, the THTML file is used with the default.template
closest to it and up the directory hierarchy.

For example, suppose the following three files exist:

Chapter 14: Presentation Templates 159
c:/foo/default.template
c:/foo/bar/doo/default.template
c:/foo/bar/a.thtml

The Template servlet would use c:/foo/default.template with c:/foo/bar/a.thtml
to produce the resulting page to the client.

160 Developing Applications with JRun

C H A P T E R 1 5
Chapter 15 Taglets
Taglets provide an additional level of separation between presentation and
application logic. With taglets, HTML programmers can concentrate on tag-based
documents for presentation, and Java programmers can concentrate on application
logic.

This chapter provides a brief introduction to taglets. This chapter also provides
guidelines on developing custom taglets.

Contents

• What Are Taglets? ... 162

• Loading and Using SSI Taglets .. 162

162 Developing Applications with JRun
What Are Taglets?
Taglets are user-defined, server-side tags that provide flexibility for application
developers to define and implement their own tags that can be used within SHTML
files. This chapter describes SSI taglets which provide a one-to-one mapping to call a
servlet.

SSI taglets

SSI taglets provide a way to call a servlet through a tag, allowing a one-to-one naming
convention between a taglet and the servlet that it represents. SSI taglets are loaded by
the SSIFilter based on the mappings defined in the local.properties file. The
local.properties file is explained in the next section.

Loading and Using SSI Taglets
The local.properties file is used by the SSIFilter for the post-processing of data.
The local.properties file may be edited by hand; however, the JRun Management
Console provides a graphical interface for setting these properties (For more
information on the JRun Management Console, see the JRun Setup Guide).

The local.properties file is used to define name/value pairs describing the
mappings of SSI taglets to their corresponding servlet. This file is located in the
directory <JRun Home Dir>/servers/<servername> where servername corresponds
to the name of a JRun server. The general syntax follows:

ssifilter.<tagname>.dynamictaglet=<servlet class name|servlet alias>

Set tagname to the name of the tag to be used to call the servlet. Either set servlet
class name to the fully qualified class name of the servlet, or set servlet alias to the
alias of the servlet (as defined in the JRun Management Console under the Servlet
Engine > Aliases control for your Web server). Either the servlet class name or the
servlet alias can be used as the value for the tagname.

For example, the following example defines a tag called foo used to invoke the servlet
SnoopServlet in a SHTML file:

ssifilter.foo.DynamicTaglet = SnoopServlet

In this case, SnoopServlet is the class name of the servlet. Defining this mapping
allows the Web document writer to call SnoopServlet within the document the
following way:

<foo></foo>

SSI taglets allow passing of parameters to the servlet in the following way:

<foo name1=value1 name2=value2 name3=value3>
Hello World
</foo>

Chapter 15: Taglets 163
The servlet writer can then fetch the name/value pair parameters through the
getParameter() method of the request object from within the servlet. For example, to
get the value of the parameter name1, you would do the following in your servlet.

request.getParameter(“name1”)

The body of the SSI taglet (in the above case, Hello World) would be fetched using the
following:

request.getAttribute(“taglet.body.foo”)

The name of the taglet is the third key in the taglet.body.key string. If your taglet
were named DATETAG, then you would use getAttribute(“taglet.body.datetag”).
In general, this method will return all text between the opening <foo> tag and the
closing </foo> tag. Note that the attribute name must be in lower-case letters.

164 Developing Applications with JRun

Se c t i o n III
Developing Servlets Section III
This section describes how to create servlets using the Java Servlet API.

Contents

Working with Java Servlets 167

Servlet Tutorial... 177

Servlet API Basics... 185

Programming with the Java Servlet API 191

Servlet Examples.. 199

Creating Custom Tags and Tag Libraries.............. 215

Servlet API Changes... 237

C H A P T E R 1 6
Chapter 16 Working with Java Servlets
This chapter describes basic servlet concepts, including classes, synchronization,
and Web applications.

Contents

• About Servlets... 168

• The Java Servlet API Version 2.2 .. 168

• Basic Servlet Classes and Interfaces ... 169

• The Servlet Lifecycle .. 169

• Synchronization ... 171

• Servlet Chaining ... 174

• Web Applications ... 175

168 Developing Applications with JRun
About Servlets
Servlets are server-side Java programs that are executed by JRun in conjunction with
your Web server.

Servlet development with JRun has many features that allow you to deliver powerful
Web-based server-side applications, including the following:

• Servlets are written in Java, providing you with all the features of the Java
programming language.

• Servlets offer better memory management than CGI.

• Servlets are compiled; so they execute very quickly. Additionally, JRun caches
servlet instances to minimize load time.

• Unlike with applets, where you have no control over the client-side Java Virtual
Machine (JVM), you have complete control over the JVM under which JRun
executes.

• JRun is written to conform to the Servlet API Specification 2.2.

You can use servlets in many ways, including:

• Generating HTML pages, optionally accessing, formatting, and returning data
from an external data source.

• Using a server-side include to embed a servlet in an HTML page.

• Chaining servlets together, each one operating on the output of the previous
servlet.

Additionally, JRun dynamically translates JSP pages into Java servlets.

The Java Servlet API Version 2.2
JRun version 3.0 fully supports the Java Servlet API Version 2.2. Version 2.2 features
include the following:

• New methods

• Support for authentication and authorization

• Enhanced request dispatching

• Response buffering

• Web applications

For complete information on the Servlet API, see http://java.sun.com/products/
servlet/.

Chapter 16: Working with Java Servlets 169
Basic Servlet Classes and Interfaces
The Servlet API uses classes and interfaces from the java.io, java.lang,
javax.servlet, and javax.http.servlet packages, as shown in the following figure.

For complete information on the classes, interfaces, and exceptions in the Servlet API,
see Chapter 18, “Servlet API Basics,” on page 185.

The Servlet Lifecycle
Servlets undergo a multi-phase lifecycle, as shown in the following diagram.

170 Developing Applications with JRun
During the initialization phase, JRun invokes the servlet’s init method. The init
method only gets called once, thus avoiding the need to allocate expensive resources
every time the servlet is invoked. Use the init method to allocate resources the servlet
needs throughout its lifecycle. JRun invokes the init method either at startup (if
enabled in the JMC) or when the first client request is received.

You are not required to override the init method in your servlet class. You only
override it when you want to perform some type of processing at initialization time.

The servicing requests phase occurs when the servlet handles all incoming requests.
JRun routes requests to either the service method or a doXxx method, depending on
the class that your servlet extends:

• GenericServlet. Servlets that extend GenericServlet perform processing by
overriding the service method.

Chapter 16: Working with Java Servlets 171
• HttpServlet. Servlets that extend HttpServlet perform processing by
overriding the doXxx method that corresponds to the anticipated HTTP request
type. For example, code a doGet method in a servlet that handles HTTP GET
requests.

For more information on these classes, see Chapter 19, “Programming with the Java
Servlet API,” on page 191.

Note JRun manages each servlet’s instance by its alias, not by its class name. If
you have not defined an alias for a servlet, JRun creates an alias
dynamically. An alias is also referred to as a registered name or canonical
name.

JRun unloads the servlet from memory when you shut down the JRun server or when
the JRun server reloads a modified servlet. At the time of the unload, the servlet goes
through the destroy phase. When the destroy request is initiated, JRun calls the
destroy method. Inside the destroy method, you can deallocate resources that the
servlet was using. As soon as the destroy method is invoked, the class can be garbage-
collected.

Synchronization
Even though servlet developers usually think in terms of servlet instances, it is
important to remember that threads, possibly multiple concurrent threads, perform
the actual work.

172 Developing Applications with JRun
Because each instance can be running in multiple threads, you must be aware of
potential synchronization issues with object-scoped variables and other shared
resources. Synchronization is the act of ensuring that a piece of code executes in a
single-threaded manner. You control thread management using the JMC, specifying
separate threading parameters for each JVM.

Note Thread management is an advanced topic, beyond the scope of this
manual. For more information, refer to a third-party book on Java thread
management.

There are many ways to prevent concurrent access to class-scoped instance variables,
including the following:

• Adding the synchronized keyword to your doXxx method’s signature (not
recommended)

• Synchronizing the line that updates the object-scoped variable

• Implementing the SingleThreadModel interface

• Synchronizing the methods that access the object-scoped variable

These techniques are discussed in the subsections that follow.

Using the synchronized keyword in the method signature

You can use the synchronized keyword in the method signature to ensure
synchronized access to an entire method:

...
public class TestSync extends HttpServlet
{
 int visitorCounter = 0;

 // Conceptual example only. Don’t do this at home.
 public synchronized void doGet(HttpServletRequest servReq,
 HttpServletResponse servRes) throws IOException, ServletException {
...

Note This example is for conceptual purposes only. You almost never use this
synchronization technique because of negative performance
implications.

Using synchronized code

You can use a synchronized block to ensure synchronized access to object-scoped
variables:

...
int thisCount;
synchronized(this) {
 // visitorCount is an object-scoped variable.
 thisCount = visitorCounter++;

Chapter 16: Working with Java Servlets 173
}
out.println("<p>You are visitor number " + thisCount);
...

This example increments the counter inside a synchronized block, which guarantees
single-threaded access to the object-scoped variable.

Using the SingleThreadModel interface

The SingleThreadModel interface instructs JRun to create a pool of servlet instances
and ensure that, for each instance, concurrent threads do not execute the service
method:

...
public class testSync extends HttpServlet
 implements SingleThreadModel {
...

Because JRun creates multiple instances of servlets that implement
SingleThreadModel, you cannot use this technique when object-scoped instance
variables need to be consistent for all instances. For example, you cannot use it for a
hit counter. However, using SingleThreadModel can be an effective technique for
servlets that do not use object-scoped instance variables or when object-scoped
instance variables do not need to be consistent, such as with buffer variables or
database connections.

Synchronizing the methods that access an object-scoped
variable

You can implement a scheme in which all access to the object-scoped variable is
performed by synchronized methods:

...
public class TestSync extends HttpServlet
{
 int visitorCounter = 0;

 public void doGet(HttpServletRequest servReq,
 HttpServletResponse servRes) throws IOException, ServletException {
 incrementCount();
...
public synchronized void incrementCount() {
 visitorCount++;
 }
public synchronized int getCount() {
 return visitorCount;
 }
...

174 Developing Applications with JRun
Servlet Chaining
JRun allows you to specify that certain servlets always execute in a particular order; the
output of the predecessor servlet is passed as input to the successor servlet. Using this
technique, you can chain together as many servlets as necessary. For example, one
servlet might access a set of data and hand it off to a successor servlet, which formats it
into rows and columns in an HTML table.

JRun allows you to implement servlet chaining using either of the following methods:

• Explicit. Explicitly specify the servlets and their order.

• MIME type. Associate each successor servlet with a MIME type. JRun executes
the successor servlet automatically when a predecessor servlet returns the
associated MIME type.

Enabling explicit servlet chaining

JRun allows you to chain servlets in an explicit sequence.

To enable explicit servlet chaining:

1. Code predecessor and successor servlets.

2. Start the JMC.

3. Expand the appropriate JRun server.

4. Expand the Web applications item.

5. Click on the Web application containing the servlets for which you want to enable
servlet chaining.

6. Display the Servlet Definitions panel.

7. Click edit.

8. Define the servlets to be chained.

9. Click update.

10. Open the Servlet URL Mappings panel.

11. Click edit.

12. In the Virtual Path/Extension field, specify the name that clients type in a URL to
invoke the first servlet in the chain.

13. In the Servlet Invoked field, specify the servlets in the chain using a comma-
separated list. Use the servlet names specified in the Servlet Definitions panel.

14. Click update.

For complete JMC usage information, refer to the JRun Setup Guide.

Chapter 16: Working with Java Servlets 175
Enabling servlet chaining by MIME type

JRun allows you to implement servlet chaining by MIME type. When you enable MIME
type chaining, you specify the servlet to execute when JRun encounters a response that
uses the specified MIME type.

To enable MIME type servlet chaining:

1. Code a servlet designed to handle input for a specific MIME type.

2. Start the JMC.

3. Expand the appropriate JRun server.

4. Expand the Web applications item.

5. Click on the Web application for which you want to enable servlet chaining by
MIME type.

6. Click MIME Chaining.

7. Click edit.

The MIME Type Settings window displays.

8. Specify the MIME type.

9. Specify the servlet to execute when JRun encounters a response that uses the
associated MIME type.

10. Click update.

For complete JMC usage information, refer to the JRun Setup Guide.

Web Applications
A Web application is a collection of Java servlets, JSP pages, JSP tab libraries, static
content such as HTML pages, and any additional resources required by the servlets
and JSP pages. A Web application is deployed into a predefined directory structure, as
explained in Chapter 2, “The JRun Programming Model,” on page 13.

The servlets and JSP pages in a Web application share a single ServletContext object.
They cannot directly share data with other applications but can indirectly share data
by accessing another application’s ServletContext object. Servlets within an
application can also share data by using a common database for a data repository.

A single JRun server can support multiple Web applications. One of the questions that
you must answer when developing Web applications is where you draw a boundary
between applications. That is, can your application exist in the same JRun server as
other applications, or must it be in separate JRun servers?

One factor that influences this decision is error handling. Since all Web applications in
the same JRun server execute within the same process, an error in one application can
bring down the entire JRun server. If this error handling outcome is not acceptable,
then you should put your applications in different JRun servers.

176 Developing Applications with JRun
Also, each JRun server can have attributes unique to the server that are required by
certain applications. For example, since each JRun server can use a different JVM, you
may decide to isolate your applications by JVM type.

Finally, application security is determined at the JRun server level. If two applications
require different security management systems, you should put them in separate JRun
servers.

For additional issues related to Web applications, see Chapter 5.

C H A P T E R 1 7
Chapter 17 Servlet Tutorial
The best way to explain the basics of any programming language and API is with the
help of the simplest program that you can develop. In this tutorial, you will develop a
"HelloWorld" servlet. As you learn more about the Java Servlet API, you will modify
the program, ending with a large yet easy-to-modify program that will address all of
the basic aspects of the Java Servlet API. At the end of this tutorial, you should have a
basic understanding of the API and the tools necessary to develop any servlet.

Note This tutorial describes how to create servlets using Java. For
information on creating servlets using JSP pages, see Chapter 7.

Contents

• Part 1.. 178

• Part 2.. 180

• Part 3.. 181

178 Developing Applications with JRun
Part 1
Start the tutorial by examining the following code:

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class HelloWorld extends HttpServlet
{
 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws IOException, ServletException {

 response.setContentType("text/html");
 PrintWriter out = response.getWriter();

 out.println("<html><head><title>Hello</title></head><body>");
 out.println("Hello World");
 out.println("</body></html>");
 }
}

Note the following:

• The first lines import all of the necessary packages for the servlet. The lines that
may not be familiar to you are import javax.servlet.* and
import javax.servlet.http.*. These items are packages from the Java
Servlet API. You import these packages because all servlets need to implement
the servlet interface. For more information, see “Servlet API Packages,” in
Chapter 18.

• The HelloWorld program extends the HttpServlet class. You extend this class
for servlets that use HTTP to communicate with a Web browser. HttpServlet
extends the GenericServlet class, which is rarely used. For more on
GenericServlet and HttpServlet, see Chapter 19, “Programming with the
Java Servlet API,” on page 191.

• The first parameter of the doGet() method is an HttpServletRequest object,
which provides an input stream so that servlets can read client requests. The
second parameter of the service method is an HttpServletResponse object,
which provides an output stream so that servlets can write a response back to
the client. For more information, see “HTTP requests and responses” on page
31.

• The setContentType() method sets the MIME type of the servlet’s output to
text/html because the output contains HTML tags. By default, the output
MIME type of a Java servlet is text/html.

• The getWriter() method returns a PrintWriter object, which allows the
servlet to return text to the browser.

• The out.println() lines specify the HTML formatting and text being sent to
the browser, including the string “Hello World”.

Now, create a Java source file named HelloWorld.java and copy the code shown above
into the file. Then compile the Java code to produce your servlet class file.

Chapter 17: Servlet Tutorial 179
Use the following command to compile HelloWorld.java:

javac -classpath c:\jruninstalldirectory\lib\ext\servlet.jar
HelloWorld.java

This command specifies a classpath to include the packages from the Java Servlet
API. This example assumes that you installed these files in the default location on a
Microsoft Windows system.

After successfully compiling the code, copy the HelloWorld.class file to the
appropriate directory so that your server can access it. For the default JRun install, this
directory is jruninstalldirectory/servers/default/default-app/WEB-INF/
classes. If you are using a different server, copy the file to the appropriate directory.

Use the following URL to invoke this servlet, assuming a server named myhost:

http://localhost/servlet/HelloWorld

For more information on JRun URLs and file locations, see “Developing Web
Applications” on page 58.

Note If your server is running on a port other than port 80, you will need to
include the port number in the URL.

The following figure displays the output of the servlet.

180 Developing Applications with JRun
Part 2
The example in Part 1 outputs a simple string value. However, a real-world servlet
typically accepts input through parameters.

Servlets use two types of parameters: request parameters and initialization parameters.
This section discusses request parameters, and Part 3 explains initialization
parameters.

You can use request parameters, referred to as simply parameters, to make the example
program print "Hello <your name>" instead of just "Hello World".

The following code example shows how you retrieve a parameter’s value using the
getParameter method. If the parameter name that you are attempting to retrieve is
not defined, then the getParameter method returns a null value.

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class HelloWorld2 extends HttpServlet {
 public void doGet(HttpServletRequest request, HttpServletResponse
 response) throws IOException, ServletException {

 response.setContentType("text/html");
 String userName;
 PrintWriter out = response.getWriter();

 out.println("<html><head><title>Hello</title></head><body>");
 if ((userName = request.getParameter("userName")) != null)
 out.println("Hello " + userName);
 else out.println("Hello, who are you?");
 out.println("</body></html>");
 }
}

Now that you know how to retrieve parameters, you need to learn how to specify them.
The most basic way to specify parameters is to use a query string as part of a
requesting URL. With the query string, you can specify parameters as follows:

http://localhost/servlet/HelloWorld2?userName=Hal

The following figure displays the output of the servlet.

Another method of specifying parameters is using the <servlet> tag in an SHTML file:

<servlet code="helloWorld2" >
 <param name="userName" value="Hal">

Chapter 17: Servlet Tutorial 181
</servlet>

You can specify parameters in other ways, such as in HTML forms. Remember that
HTML forms can use either the GET or POST method to send data to the Web server. For
more information on the relationship between GET, POST, and the methods you code in
a servlet, see Chapter 19.

Part 3
Now that you know how to retrieve and specify request parameters, you can examine
an example that uses initialization parameters. This section explains one way to use
initialization parameters and how to retrieve them in a servlet.

Assume that you need a counter to record how many times a specific Web page is
accessed. Furthermore, you would like to print the value of the counter in a different
font size than the rest of the servlet output. To accomplish these tasks, you need two
variables in the class: counter and fontSize.

The following code example shows how to use initialization parameters to maintain
counter and fontSize:

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class UseInitParms extends HttpServlet {
//Default Values
private static final int FONTSIZE = 3;
private static final int COUNTER = 0;

//Default Variables
public static int fontSize;
public static int counter;

// It’s best to overload the no-args init method.
public void init () throws ServletException {

if (getInitParameter("fontSize") != null){
try{

this.fontSize =
Integer.parseInt(getInitParameter("fontSize"));

}
catch (NumberFormatException e){

this.fontSize = this.FONTSIZE;
}

}
else this.fontSize = this.FONTSIZE;
if (getInitParameter("counter") != null){

try{
this.counter =
Integer.parseInt(getInitParameter("counter"));

}
catch (NumberFormatException e){

this.counter = this.counter;

182 Developing Applications with JRun
}
}
else this.counter = this.counter;

}

public void doGet(HttpServletRequest request, HttpServletResponse
 response) throws IOException, ServletException {

// Set the content type
response.setContentType("text/html");

String userName;
PrintWriter out = response.getWriter();
if (request.getParameter("userName") != null)

userName = request.getParameter("userName");
else userName = new String("Stranger");

out.println("<html><head>Hello " + userName + "</
head><body>
");
out.println("This page has been accessed <font size=+" +
fontSize +">" + counter++ + " times
");
out.println("</body></html>");

}
}

Both counter and fontSize have default values defined within the class definition;
however, deployers and system administrators can optionally override these default
values using initialization parameters. This flexibility enables a site to start counting at
whatever value they wish and to specify the desired font size for the value of the
counter display.

You specify initialization parameters for a servlet using the JMC. For information on
using the JMC, see the JRun Setup Guide.

This tutorial assumes that you know the basics of Java; so it does not explain the
constants and variables declarations.

The first method is the init method. You use the init method to retrieve the
initialization parameters with the getInitParameter method and to initialize the
global variables. This example uses the init method with no arguments. (If you use
the init(ServletConfig config) version, be sure that the first line of the init method
is a call to super.init(config).)

Remember that servlets remain in memory until the Jrun server is restarted or until
they are reloaded dynamically. Also, because the init method is called only once each
time that the servlet is loaded, the global variables are initialized only once. After the
global variables are initialized, they are available throughout the lifetime of the servlet,
maintaining their state throughout different client requests.

So, following the code in the init method, if the deployer or system administrator sets
valid initialization parameters using the JMC, then the global variables will be set to
those values. If they do not specify initialization parameters, or accidentally specify
wrong initialization parameters, then the global variables will be set to the default
values (the constants).

The doGet method uses the fontSize and counter variables in its HTML output.

Chapter 17: Servlet Tutorial 183
The following figure displays the output of the servlet.

Now that you know how to retrieve initialization parameters, you should be able to
write almost any basic servlet.

184 Developing Applications with JRun

C H A P T E R 1 8
Chapter 18 Servlet API Basics
This chapter describes the basics of servlet creation and the Servlet API.

Contents

• Types of Java Servlets ... 186

• Servlet API Packages .. 186

• Servlet API Reference Information ... 190

186 Developing Applications with JRun
Types of Java Servlets
To be considered a servlet, a class must implement the javax.servlet.Servlet
interface. The Servlet API provides two classes that implement this interface and that
you can extend to create Java servlets:

• GenericServlet — Provides basic, protocol-independent, servlet functionality.
You extend this class to code non-HTTP services. In most cases, however, your
classes extend from HttpServlet.

• HttpServlet — Extends GenericServlet to add HTTP-specific functionality.
Most of your classes extend HttpServlet, and the discussions in this chapter
assume that your classes perform HTTP processing.

Servlet API Packages
The Servlet API is a specification published by the Java Software division of Sun
Microsystems. It outlines classes, methods, and behaviors required by Java servlets and
servers that support Java servlets. JRun Version 3.0 supports the Java Servlet
Specification Version 2.2.

The Servlet API includes the following packages:

• javax.servlet

• javax.servlet.http

Note JRun ships with JavaDoc-format documentation for these packages in
the jruninstalldirectory/docs/api directory. For additional
documentation on the Servlet API, go to http://java.sun.com/
products/servlet/.

javax.servlet

The javax.servlet package contains interfaces, classes, and exceptions that apply to
all servlets, as explained in the following tables.

Chapter 18: Servlet API Basics 187
javax.servlet interfaces

The following table outlines the interfaces in javax.servlet.

Interfaces in javax.servlet

Interface Description Comment

RequestDispatcher Defines an object that forwards
processing of a request to another
servlet, JSP page, or HTML file. Also
enables you to include the output
of another servlet in the response.

Servlet Defines methods to initialize a
servlet instance, process a request,
and destroy a servlet instance.

The GenericServlet
class implements this
interface.

ServletConfig Defines an object that passes
information to the servlet’s init
method.

Contains name/value
pairs, the servlet’s name,
and a reference to the
Web application’s
ServletContext object.

ServletContext Defines methods that a servlet uses
to access information about the
servlet container. Also includes
application init parameters.

There is one
ServletContext per
Web application per
virtual machine.

ServletRequest Defines an object that
encapsulates client request
information.

Each instance includes
name/value pairs,
attributes, and an input
stream.

ServletResponse Defines an object that
encapsulates information returned
to the client.

You can send either
binary data or character
data.

SingleThreadModel Defines an object that ensures that
each servlet instance executes only
one request at a time.

For more information on
this interface, refer to
JavaDoc API
documentation.

188 Developing Applications with JRun
javax.servlet classes

The following table outlines the classes in javax.servlet.

javax.servlet exceptions

The following table outlines the exceptions in javax.servlet.

javax.servlet.http

The javax.servlet.http package contains interfaces and classes that apply to
servlets requiring HTTP functionality, as explained in the following tables.

Classes in javax.servlet

Class Description Comment

GenericServlet Protocol-independent servlet. You typically use
HttpServlet instead
of this class.

ServletInputStream Stream for reading binary data
from a client request.

You typically do not
use this class.

ServletOutputStream Stream for sending binary data to a
client.

You typically do not
use this class.

Exceptions in javax.servlet

Exception Description Comment

ServletException General exception to indicate
problems in a servlet.

UnavailableException Indicates that a servlet is
unavailable.

You can use this
exception to indicate
either temporary or
permanent unavailability.

Chapter 18: Servlet API Basics 189
javax.servlet.http interfaces

This table outlines the interfaces in javax.servlet.http.

javax.servlet.http classes

This table outlines the classes in javax.servlet.http.

Interfaces in javax.servlet.http

Interface Description Comment

HttpServletRequest Extends ServletRequest
for HTTP servlets.

Use this object to
access cookies,
attributes, and
other information
for the request.

HttpServletResponse Extends ServletResponse
for HTTP servlets.

Use this object to
send a response to
the browser.

HttpSession Contains user information
that persists across page
requests.

Sessions are keyed
by session id, which
is maintained either
in cookies or by URL
parameters.

HttpSessionBindingListener Notifies objects when they
are bound or unbound from
a session.

Use this interface to
initialize and clean
up session-specific
resources.

Classes in javax.servlet.http

Class Description Comment

Cookie Allows servlets to create,
read, and modify client
cookies.

Read cookies using the
HttpServletRequest
object. Set cookies using
the
HttpServletResponse
object.

HttpServlet Abstract class that you
extend to create HTTP
servlets.

Use this class for all Web-
oriented servlets.

190 Developing Applications with JRun
Servlet API Reference Information
JRun ships with full online Servlet API documentation, located in
jruninstalldirectory/docs/api. You can also access the latest API documentation
from http://java.sun.com/products/servlet.

HttpSessionBindingEvent Passed to objects that
implement the
HttpSessionBindingLis
tener interface when they
are bound or unbound
from a session.

Contains two methods,
getName and
getSession.

HttpUtils Contains useful utility
methods.

Methods include
getRequestURL,
parsePostData, and
parseQueryString.

Classes in javax.servlet.http (Continued)

Class Description Comment

C H A P T E R 1 9
Chapter 19 Programming with the Java
Servlet API
This chapter explains how to program with the basic classes in the Servlet API. For
basic servlet concepts, see Chapter 16. For additional coding techniques, see
Chapter 20

Contents

• Coding Methods in the GenericServlet Class... 192

• Coding Methods in the HttpServlet Class .. 195

192 Developing Applications with JRun
Coding Methods in the GenericServlet Class
The GenericServlet class implements the Servlet interface to provide functionality
for non-HTTP servlets. Because the HttpServlet class overrides GenericServlet,
these methods are also available to servlets that extend HttpServlet.

If your application extends the GenericServlet class, it must override the service
method. If necessary, your application can also override the getServletInfo, init,
and destroy methods. Additionally, the GenericServlet class includes methods that
you can use to access servlet, request, and application information.

Overriding the service method

JRun invokes the service method for every servlet request. Servlets that extend
GenericServlet must override the service method.

The service method takes the following parameters:

• ServletRequest, which contains information about the client request.

• ServletResponse, which allows you to return data to the client.

The following example overrides the service method (note that your servlets typically
extend HttpServlet class instead of GenericServlet):

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class HelloPlainText extends GenericServlet
{
 public void service(ServletRequest request,
 ServletResponse response) throws IOException, ServletException {
 PrintWriter out = response.getWriter();

out.println("Hello World. Plain text version.");
 }
}

Overriding the getServletInfo, init, and destroy methods

The GenericServlet class includes methods that you optionally override to provide
specific functionality for a servlet:

• getServletInfo, which allows you to provide a description of the servlet.

• init, which JRun calls when the servlet is first loaded.

• destroy, which JRun calls before unloading the servlet.

Chapter 19: Programming with the Java Servlet API 193
Coding the getServletInfo method

getServletInfo is an optional method that other classes can call to access a
description of your servlet. This method accepts no arguments and returns a String,
as shown in this example:

...
public String getServletInfo() {
 String infoMessage = "EIS Servlet. Version 1.1";
 return infoMessage;
 }
...

Coding the init method

Because JRun calls the init method when the servlet is first loaded, you can optionally
code one-time setup and initialization logic, such as database connection and other
global variables or references. You have two options when overriding the init method:

• public void init(ServletConfig config). When you override this version
of the init method, the first line must always be a call to super.init(config).

• public void init(). When you override this version of the init method, the
call to super.init(config) is not required.

The following example uses the no-arguments version of the init method:

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class UseInitParms extends HttpServlet
{
 //Default Values
 private static final int FONTSIZE = 3;
 private static final int COUNTER = 0;

 //Default Variables
 public static int fontSize;
 public static int counter;

 public void init () throws ServletException
 {
 // Establish default font size.
 if (getInitParameter("fontSize") != null){
 try{
 this.fontSize = Integer.parseInt(getInitParameter("fontSize")) ;
 }
 catch (NumberFormatException e){
 this.fontSize = this.FONTSIZE;
 }
 }
 else this.fontSize = this.FONTSIZE;
 // Establish counter.
 if (getInitParameter("counter") != null){

194 Developing Applications with JRun
 try{
 this.counter = Integer.parseInt(getInitParameter("counter")) ;
 }
 catch (NumberFormatException e){
 this.counter = this.counter;
 }
 }
 else this.counter = this.counter;
 }
...

Coding the destroy method

JRun calls the destroy method before unloading the servlet from the server. Therefore,
you can optionally code application shutdown logic, such as database disconnection
and state management. The following example disconnects from the database:

...
public void destroy() {
 // Assume that dbConnection is an instance variable that was
 // set by the init method.
 if (dbConnection != null) {
 dbConnection.close();
 }
}

Accessing servlet, request, and application information

The GenericServlet class includes methods that you can invoke to access
information and log messages:

• getInitParameter and getInitParameterNames, which allow you to access
servlet initialization parameters.

• getServletConfig, which returns the ServletConfig object, allowing access
to initialization parameters and context information. GenericServlet contains
methods that access this information; so you do not typically use
getServletConfig.

• getServletContext, returns the ServletContext object, allowing access to
methods that interact with JRun. For a code example, see “Using the Servlet
Context” on page 210.

• log, which writes a message to the log file.

Using initialization parameters

The following example uses both the getInitParameterNames and getInitParameter
methods:

...
 // Assume this is part of the doGet method.

Enumeration eParmNames = getInitParameterNames();

Chapter 19: Programming with the Java Servlet API 195
while (eParmNames.hasMoreElements()) {
 String parm = (String) eParmNames.nextElement();

 out.println(" " + parm+ ": " + getInitParameter(parm) + "
");
}

...

Logging messages

The log method writes a programmer-specified message to the log file of the JRun
server hosting the servlet.

Note JRun logs varying amounts of information automatically, as described in
Chapter 37.

The following example logs user-access information:

...
HttpSession thisSession = request.getSession();
String userName = (String)thisSession.getAttribute("name");
if(userName != null) {
 out.println("<h2>Welcome " + userName + "</h2>");

 // Prepare information for logging.
 // This example logs user name and IP address.
 String logMsg = userName + ", " + request.getRemoteAddr();
 log(logMsg);
}

...

Coding Methods in the HttpServlet Class
The HttpServlet class extends the GenericServlet class. Most of the servlet classes
that you develop extend the HttpServlet class. To program with HttpServlet, you
override either the service method or one or more of the HTTP-specific request
handling methods:

• doGet

• doPost

• doPut

• doDelete

• doHead

• doOptions

• doTrace

Each of these methods takes the following parameters:

• HttpServletRequest, which contains HTTP headers and other client request
information.

• HttpServletResponse, which allows you to return HTML to the browser.

196 Developing Applications with JRun
Overriding the service method

The service method is invoked for every servlet request:

• For servlets that extend GenericServlet, you must override the service
method and can optionally override the init and destroy methods.

• For servlets that extend HttpServlet, the default implementation of the
service method routes requests to the appropriate doXxx method. For
example, when it receives an HTTP GET request, the service method calls the
doGet method. If you override the default service method, it must either be
able to handle all types of HTTP requests or include logic to dispatch requests
to the appropriate doXxx method.

Overriding the doGet method

The doGet method is invoked for HTTP GET requests. The Web browser sends an HTTP
GET request when the user types a URL, clicks on a link, or submits a form that specifies
method=GET.

The following example shows a servlet that uses the doGet method to display basic
information:

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class DisplayInfo extends HttpServlet
{

public void doGet(HttpServletRequest request,
 HttpServletResponse response) throws IOException, ServletException {

response.setContentType("text/html");
PrintWriter out = response.getWriter();
out.println("<html><head><title>Display Information");
out.println("</title></head><body>");
out.println("<h1>displayInfo Servlet</h1>");

 out.println("<h2>Request Information</h2>");
 out.println("Scheme: " + request.getScheme() + "
");

out.println("Server Name: " + request.getServerName() + "
");
out.println("RemoteAddr: " + request.getRemoteAddr() + "
");
out.println("RemoteHost: " + request.getRemoteHost() + "
");
out.println("Method: " + request.getMethod() + "
");
out.println("Query String: " + request.getQueryString() + "
");
out.println("Request URI: " + request.getRequestURI() + "
");
out.println("Servlet Path: " + request.getServletPath() + "
");
out.println("</body></html>");

 }
}

Chapter 19: Programming with the Java Servlet API 197
Overriding the doPost method

The doPost method is invoked for HTTP POST requests. The Web browser sends an
HTTP POST request when the user submits a form that specifies method=POST.

The following example shows an HTML form that invokes a servlet via a POST request:

<html>
<head>

<title>Login to the System</title>
</head>

<body bgcolor="Silver">
<h1>Login to the System</h1>

<!-- Display the login form. -->
<form action="/servlet/selectionForm" method="POST">
<p>Name:
<input type="Text" name="myName" size="30">
<p>
<input type="Submit" value="Log In">
</form>

</body>
</html>

This example shows a servlet that uses the doPost method to access a passed value:

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class selectionForm extends HttpServlet
{

public void doPost(HttpServletRequest request,
 HttpServletResponse response) throws IOException, ServletException {
 response.setContentType("text/html");

PrintWriter out = response.getWriter();
String thisName = "Unknown Name";
// Get user name from login form.
String[] attrArray = request.getParameterValues("myName");

 // We know that the calling form only has one value for myName.
if(attrArray != null) {
 thisName = attrArray[0];
}

 out.println("<html><head><title>Choose Information to Display");
 out.println("</title></head><body>");
 out.println("<h1>Welcome " + thisName + "</h2>");
 out.println("<h2>Choose Information to Display</h2>");
 // Use the backslash to escape double quotes.
 out.println("<form action=\"/servlet/displayInfo\" method=\"post\">");
 // Checkbox to display HTTP request information
 out.println("<p>Display request information? ");
 out.println("<input type=\"Checkbox\" name=\"requestInfo\" checked>");

198 Developing Applications with JRun
 // Checkbox to display cookie information
 out.println("<p>Display cookies? ");
 out.println("<input type=\"Checkbox\" name=\"showCookies\" checked>");
 out.println("
");
 out.println("<input type=\"Submit\">");
 out.println("</form>");
 out.println("</body></html>");
 }
}

Overriding other HTTP methods

The HttpServlet class includes methods that support additional HTTP request types,
as explained in the following table. Note that HTTP/1.1 supports all request types;
HTTP/1.0 supports GET, HEAD, and POST.

HTTP Request Types

Request type Method Comment

DELETE doDelete For more information on DELETE requests, refer to
HTTP documentation.

PUT doPut For more information on PUT requests, refer to
HTTP documentation.

HEAD doHead Executes the doGet method but returns headers
only.

OPTIONS doOptions The default implementation returns a list of
supported options. You typically do not override
this method.

TRACE doTrace The default implementation lists all of the headers
in the TRACE request. You typically do not override
this method.

C H A P T E R 2 0
Chapter 20 Servlet Examples
This chapter provides code examples for common servlet functionality.

Contents

• Passing Control... 200

• Tracking a Session .. 201

• Accessing a Database ... 203

• Handling Cookies ... 209

• Using the Servlet Context .. 210

• Including Content from Other Files ... 212

200 Developing Applications with JRun
Passing Control
You can use the RequestDispatcher object’s forward method to pass control to
another servlet or a JSP page. When you use the forward method, the calling servlet
cannot write to the output stream. If necessary, the calling servlet can pass information
to the target servlet by setting attributes via the ServletRequest object’s
setAttribute method (request object in JSP). The target program can then access
attributes as follows:

• Servlets can access these attributes via the ServletRequest object’s
getAttribute method.

• JSP pages can access these attributes via the request object’s getAttribute
method.

You obtain a reference to the RequestDispatcher object through the
getRequestDispatcher method, which is found in both the ServletContext object
and the ServletRequest object. The only difference is that the path name specified in
ServletRequest.getRequestDispatcher does not require a leading slash; so it can be
used with a relative URL. ServletContext.getRequestDispatcher requires a leading
slash. The following examples use ServletContext.getRequestDispatcher.

Passing control to another servlet

The following example passes control to another servlet:

import java.io.*;
import java.util.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class TestCaller extends HttpServlet
{

public void doGet(HttpServletRequest request,
 HttpServletResponse response) throws IOException, ServletException {

// Get the ServletContext.
ServletContext sc = this.getServletContext();
// Wrap the target servlet in a RequestDispatcher.
RequestDispatcher rd = sc.getRequestDispatcher("/servlet/callMe");
if (rd !=null) {

 // Pass control to the servlet.
 try {
 rd.forward(request, response);

 }
 catch (Exception e) {
 sc.log("Problem invoking servlet.", e);
 }
}

 }
}

Chapter 20: Servlet Examples 201
Passing control to a JSP page

You can also use the RequestDispatcher object to pass control to a JSP page.

Note You can also use this technique to pass control to an HTML page.

The following example passes control to a JSP page:

import java.io.*;
import java.util.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class TestCaller extends HttpServlet
{

public void doGet(HttpServletRequest request,
 HttpServletResponse response) throws IOException, ServletException {

// Get the ServletContext.
ServletContext sc = this.getServletContext();
// Wrap the JSP page in a RequestDispatcher.
RequestDispatcher rd = sc.getRequestDispatcher("/test.jsp");
if (rd !=null) {

 // Pass control to the JSP page.
 try {
 rd.forward(request, response);

 }
 catch (Exception e) {
 sc.log("Problem invoking JSP page.", e);
 }
}

 }

}

Tracking a Session
The stateless nature of the HTTP protocol requires Web applications to somehow
maintain session information between requests. That is, to function properly, your
servlet needs to know who is making the request, whether they have already started
interacting with the Web application, and what they were doing.

In a simple implementation, your application might remember the user name; in a
secure implementation, your application might remember the user name and
password; in an e-commerce system, your application might maintain the shopping
cart. In applications that do not use the Servlet API, you typically store session
information using an application-specific storage mechanism and return a key value
to the browser through either a hidden form field or a cookie. Subsequent requests use
this key value to look up the previously stored session information.

202 Developing Applications with JRun
The Java Servlet Specification defines the HttpSession interface, which provides
session management functionality while shielding you from the implementation
details. The HttpSession interface is available from the HttpServletRequest class.

You use the getSession method to establish a session and the getAttribute method
to access values from a session.

To establish a session:

1. Establish the values to be saved in the session:

public class SelectionForm extends HttpServlet
{

public void service(HttpServletRequest request,
 HttpServletResponse response)
 throws IOException, ServletException {

response.setContentType(“text/html”);
PrintWriter out = response.getWriter();
String thisName = "Unknown Name";
// Get user name from login form.
String[] attrArray = request.getParameterValues("myName");

 // We know that the calling form only has one value for myName.
if(attrArray != null && attrArray.length > 0) {
 thisName = attrArray[0];
}

2. Create a new session by calling the HttpServletRequest object’s getSession
method:

// Create session.
HttpSession thisSession = request.getSession();

3. Associate the attribute with the session:

 // This example save a user name.
thisSession.setAttribute("name", thisName);

To access session information:

1. Obtain a reference to the session object by calling the HttpServletRequest
object’s getSession method:

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class DisplayInfo extends HttpServlet
{
public void service(HttpServletRequest request,
 HttpServletResponse response)
 throws IOException, ServletException {

response.setContentType(“text/html”);
PrintWriter out = response.getWriter();
out.println("<html><head><title>Display Information");
out.println("</title></head><body>");
out.println("<h1>displayInfo Servlet</h1>");

Chapter 20: Servlet Examples 203
// Get logged-in user from session object
HttpSession thisSession = request.getSession();

2. Use the HttpSession object’s getAttribute method to access the desired
attribute value. Be sure to cast the result to the appropriate type.

String userName = (String)thisSession.getAttribute("name");

3. Use the attribute value in your code:

if(userName != null) {
 out.println("<h2>Welcome " + userName + "</h2>");
}

Accessing a Database
JRun database access is performed through the Java database connectivity API (JDBC).
JDBC uses a driver manager (provided by Sun) and a JDBC driver (Sun provides the
JDBC-ODBC bridge; third-party vendors provide other JDBC drivers). If you are
unfamiliar with database access through JDBC, please refer either to your JDBC driver
documentation or to one of the books on JDBC.

To access a database through JDBC, your application must provide the following:

• Database driver: Use the Class.forName method to instantiate the database
driver.

• Database connection object: Use the DriverManager.getConnection method
to establish the Connection object.

• Database URL: The database URL contains the protocol (jdbc), the driver
subprotocol (examples include odbc and sequelink), and driver-dependent
data that identifies the database. Refer to your database-driver-specific
documentation for the format and contents of the database URL.

• Statement object: Execute a SQL statement using methods in the Statement
object.

• Result set: Use the ResultSet object to store and access data retrieved from the
database.

This discussion describes how to perform database access using the following
methods:

• JDBC-ODBC bridge

• JDBC driver

• JRun data source service

Using the JDBC-ODBC Bridge

The JDBC-ODBC bridge is a JDBC driver that interfaces with an existing ODBC driver
to provide database access. The JDBC-ODBC bridge is also referred to as a Type 1 JDBC
driver. Because the JDK includes the JDBC-ODBC bridge, it is a good way to learn

204 Developing Applications with JRun
database-access concepts quickly. However, you will probably want to use a native
JDBC driver for production use.

The following example uses the JDBC-ODBC bridge to access the cfsnippets
datasource:

import java.sql.*;
import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class DbTest extends HttpServlet
{
 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws IOException, ServletException {
 // First, set things up.

 // JDBC driver.
 String dbDriverName = "sun.jdbc.odbc.JdbcOdbcDriver";
 // Connection URL.
 String dbConnectionURL = "jdbc:odbc:cfsnippets";
 // Connection object.

 Connection dbConnection = null;
 // Statement object.
 Statement dbStatement = null;
 // SQL statement to execute.
 String sqlStatement = "Select * from Courses";
 // Result set object.
 ResultSet dbResultSet = null;

 // Start the servlet output.
 PrintWriter out = response.getWriter();

 response.setContentType("text/html");
 out.println("<html><head><title>DB Test</title></head><body>");

 out.println("<h1>Database Test</h1>");

 // Start the db access code.
 try {

 // Create JDBC driver instance.
 Class.forName(dbDriverName).newInstance();

 // Create db connection.
 dbConnection = DriverManager.getConnection(dbConnectionURL);

 // Create Statement object.
 dbStatement = dbConnection.createStatement();

 // Execute the query.
 dbResultSet = dbStatement.executeQuery(sqlStatement);

 // Print column headers.
 ResultSetMetaData rsMetaData = dbResultSet.getMetaData();
 int colCount = rsMetaData.getColumnCount();

 // Displays the results in a table.

Chapter 20: Servlet Examples 205
 // Start the table.
 out.println("<table>");

 // Start a new row
 String thisLine = "";

 for (int i = 0; i < colCount; i++) {
 thisLine += "<th>";

 // Column header is based on 1.
 thisLine += rsMetaData.getColumnLabel(i + 1);

 thisLine += "</th>";
 }

 // Print headers.
 out.println("<tr>" + thisLine + "</tr>");

 // Print the result set.
 int rows = 0;

 //Step through the result set.
 while (dbResultSet.next()) {
 rows++;

 // Display row contents.
 thisLine = "";

 for (int i = 0; i < colCount; i++) {
 // Column index is based on 1.
 thisLine += "<td>";
 thisLine += dbResultSet.getString(i +1);
 thisLine += "</td>";
 out.println("<tr>" + thisLine + "</tr>");

 }
 // End the table.

 out.println("</table>");

 }
 catch (Exception e){
 out.println("<p>Exception in main try block");

 e.printStackTrace();
 }

 // Do this no matter what.
 finally {
 // Clean up.

 try {
 if (dbResultSet != null) {

 dbResultSet.close();
 }

 if (dbStatement != null) {
 dbStatement.close();
 }
 if (dbConnection != null) {
 dbConnection.close();
 }
 }
 catch (SQLException sqlex) {

206 Developing Applications with JRun
 out.println("<p>SQL exception in finally block");
 sqlex.printStackTrace();
 }
 }

 // Finish servlet output.
 out.println("</body></html>");
 }
}

Using a JDBC driver

The JDBC-ODBC bridge accesses a database through an ODBC driver. You can also use
native JDBC drivers. There following list describes the types of JDBC drivers:

• Native API driver: This type of JDBC driver is also referred to as a Type 2 driver.
It wraps Java code around native database libraries. JRun must have access to
database client API libraries to use a Type 2 driver.

• Net protocol driver: This type of JDBC driver is also referred to as a Type 3
driver. It communicates with the database using a generic network protocol
and a middleware component.

• Native protocol driver: This type of JDBC driver is also referred to as a Type 4
driver. It communicates with the database using database-specific native
protocols.

The code you write when using s JDBC driver is similar to that used with the JDBC-
ODBC bridge. The only differences are the driver class and the database URL, as shown
in the following snippet:

import java.sql.*;
import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class DbTest extends HttpServlet
{
 public void doGet(HttpServletRequest request,
 HttpServletResponse response) throws IOException, ServletException {

// JDBC driver.
String dbDriverName = "intersolv.jdbc.sequelink.SequeLinkDriver";
// Connection URL.
String dbConnectionURL =
 "jdbc:sequelink://DBSRV:8300/[SQL SERVER];Database=cfsnippets";
// The remaining code is identical to the JDBC-ODBC bridge example.
// Connection object.

 Connection dbConnection = null;
// Statement object.
Statement dbStatement = null;
// SQL statement to execute.
String sqlStatement = "Select * from Courses";
// Result set object.
ResultSet dbResultSet = null;

Chapter 20: Servlet Examples 207
...
// Start the db access code.
try {

 // Create JDBC driver instance.
 Class.forName(dbDriverName).newInstance();

 // Create db connection.
 dbConnection = DriverManager.getConnection(dbConnectionURL);

 // Create Statement object.
 dbStatement = dbConnection.createStatement();

 // Execute the query.
 dbResultSet = dbStatement.executeQuery(sqlStatement);

...

Using the JRun data source service

The JRun data source service allows you to define JDBC data sources in JRun. Your
code then references the name defined in the JRun data source service instead of the
JDBC data source name. This allows you to change data source information in JRun
without recompiling your servlets.

For information on defining a data source in JRun, see the JRun Setup Guide.

The following code example uses the JRun data source service to access JDBC data
source information:

import java.sql.*;
import javax.sql.*;
import javax.naming.*;
import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class DbTest extends HttpServlet
{
 public void doGet(HttpServletRequest request,
 HttpServletResponse response) throws IOException, ServletException {
 // The name defined in the JRun data source service.

String dsName = "cfsnippetsJRun";

// Connection object.
 Connection dbConnection = null;

// Statement object.
Statement dbStatement = null;
// SQL statement to execute.
String sqlStatement = "Select * from Courses";
// Result set object.
ResultSet dbResultSet = null;

// Start the servlet output.
 PrintWriter out = response.getWriter();

response.setContentType("text/html");

208 Developing Applications with JRun
out.println("<html><head><title>Database Test</title>");
out.println("</head><body>");

 out.println("<h1>Database Test</h1>");

// Start the db access code.
try {

 // Define JNDI InitialContext object.
 InitialContext ctx = new InitialContext();

 // Look up data source in InitialContext.
 DataSource ds =
 (DataSource)ctx.lookup("java:comp/env/jdbc/" + dsName);

 dbConnection = ds.getConnection();

 // Create Statement object.
 dbStatement = dbConnection.createStatement();

 // Execute the query.
 dbResultSet = dbStatement.executeQuery(sqlStatement);

 // Print column headers.
 ResultSetMetaData rsMetaData = dbResultSet.getMetaData();
 int colCount = rsMetaData.getColumnCount();

 // Displays the results in a table.
 // Start the table.
 out.println("<table>");

 // Start a new row
 String thisLine = "";

 for (int i = 0; i < colCount; i++) {
 thisLine += "<th>";

// Column header is based on 1.
thisLine += rsMetaData.getColumnLabel(i + 1);

 thisLine += "</th>";
 }

 // Print headers.
 out.println("<tr>" + thisLine + "</tr>");

 // Print the result set.
 int rows = 0;

 //Step through the result set.
 while (dbResultSet.next()) {
 rows++;

 // Display row contents.
thisLine = "";

 for (int i = 0; i < colCount; i++) {
 // Column index is based on 1.
 thisLine += "<td>";
 thisLine += dbResultSet.getString(i +1);
 thisLine += "</td>";
out.println("<tr>" + thisLine + "</tr>");

 }
 // End the table.

Chapter 20: Servlet Examples 209
 out.println("</table>");

}
 catch (Exception e){
 out.println("<p>Exception in main try block");

 e.printStackTrace();
 }

// Do this no matter what.
finally {
 // Clean up.

 try {
 if (dbResultSet != null) {

 dbResultSet.close();
 }

 if (dbStatement != null) {
 dbStatement.close();
 }
 if (dbConnection != null) {
 dbConnection.close();
 }
 }
 catch (SQLException sqlex) {

 out.println("<p>SQL exception in finally block");
 sqlex.printStackTrace();
 }
}

 // Finish servlet output.
 out.println("</body></html>");
 }

}

Handling Cookies
Cookies are a general mechanism used by server-side applications to store
information in individual browsers. Cookies stored in a browser can then be retrieved
by the server-side application. With cookies, your Web application can create variables
specifically for each individual browser. Such variables might include a user name or
the last-accessed date. If you enable session tracking through cookies, JRun creates a
session-tracking cookie named jsessionid (you can control the cookie name through
the JMC).

Cookies provide a persistence mechanism that you can use to compensate for the
HTTP protocol’s stateless nature. A cookie can be either temporary or permanent:

• Temporary — Lasts for the life of the browser instance. Temporary cookies are
good for holding user name/password for use in authenticating access to
secure systems. By default, the Servlet API creates temporary cookies.

210 Developing Applications with JRun
• Permanent — Lasts until they expire or are deleted. Permanent cookies are
good for holding information such as user name and last-accessed date. To
create permanent cookies, use the cookie object’s setMaxAge method.

Although cookies are currently supported by all major commercial browsers, the
support varies, and clients can use browser settings to disable cookie support.

To establish a cookie:

1. Establish the value to be saved in the cookie:

Date dt = new Date();
String todayString = dt.toString();

2. Create a new Cookie object.

// Create the cookie instance
// This example saves the current date and time.
Cookie lastVisit = new Cookie("lastVisit", todayString);

3. Send the cookie back to the browser by associating the cookie object with the
servlet response object:

response.addCookie(lastVisit);

To access cookies:

1. Access cookies through the HttpServletRequest object’s getCookies method.

Cookie[] myCookies = request.getCookies();

2. Use the Cookie object’s getName and getValue methods to access cookies and
their values. This example displays cookie names and their associated values:

for(int i=0; i<myCookies.length; i++) {
 out.println("Cookie name: " + myCookies[i].getName());

 out.println(" Value: " + myCookies[i].getValue() + "
");

}

Using the Servlet Context
The ServletContext object enables you to store information about your application
and access environment information, such as the following:

• Initialization parameters

• MIME type

• Version information

• Path information

Servlets use the getServletContext method to obtain a reference to the
ServletContext object.

Chapter 20: Servlet Examples 211
The following example displays selected servlet context information:

import java.io.*;
import java.util.Date;
import javax.servlet.*;
import javax.servlet.http.*;

public class GetServletContextInfo extends HttpServlet
{

public void doGet(HttpServletRequest request,
 HttpServletResponse response) throws IOException, ServletException {

 // Set return content type
response.setContentType("text/html");
PrintWriter out = response.getWriter();
out.println("<html><head><title>Servlet Context</title>");
out.println("</head><body>");
out.println("<h1>Servlet Context Information</h1>");

// Get ServletContext info
 ServletContext scntxt = this.getServletContext();

// Server info
out.println("Server information:" + scntxt.getServerInfo() + "
");
// Major and minor version
int majorVersion = scntxt.getMajorVersion();
int minorVersion = scntxt.getMinorVersion();
out.println("Major version: " + majorVersion + "
");
out.println("Minor version: " + minorVersion + "
");
// Get init parameters, if any
java.util.Enumeration parmEnum = scntxt.getInitParameterNames();
if (parmEnum.hasMoreElements()) {

 out.println("<h2>ServletContext Parameters</h2>");
}
while (parmEnum.hasMoreElements()) {
 String name = (String)parmEnum.nextElement();
 out.println(""+name+": ");
 out.println(scntxt.getInitParameter(name) + "
");
}
// ServletContext attributes
java.util.Enumeration attrEnum = scntxt.getAttributeNames();
if (attrEnum.hasMoreElements()) {

 out.println("<h2>ServletContext Attributes</h2>");
}
while (attrEnum.hasMoreElements()) {
 // Always cast attributes to appropriate class
 String attrName = (String)attrEnum.nextElement();
 out.println("" + attrName + ": ");
 out.println(scntxt.getAttribute(attrName) + "
");
}

 // Get real path for servlet
String path = request.getServletPath();
out.println("Full servlet path: ");
out.println(scntxt.getRealPath(path) + "
");

212 Developing Applications with JRun
 // Write to log through ServletContext
Date now = new Date();
scntxt.log("Testing ServletContext: " + now);

out.println("</body></html>");
 }

}

Including Content from Other Files
You can include content into your servlet using the following techniques:

• The RequestDispatcher object’s include method.

• The ServletContext object’s getResource method.

For more information on using the RequestDispatcher object, see “Passing Control”
on page 200.

Using the include method

You can use the RequestDispatcher object’s include method to include multiple
types of content into your servlet:

• Text. If the RequestDispatcher object wraps a text file, the include method
copies the text into the output stream. This text can include HTML tags.

• Servlet. If the RequestDispatcher object wraps a servlet, the include method
invokes the servlet.

• JSP page. If the RequestDispatcher object wraps a JSP page, the include
method invokes the JSP page.

When you use the include method, the calling servlet can write to
ServletOutputStream, PrintWriter, or out (out is for JSP pages only) before and after
calling the include method. If necessary, you can pass information to the target servlet
or JSP page via the ServletRequest object’s setAttribute method, as described in
“Passing Control” on page 200.

The following example includes a servlet:

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class TestCallerInclude extends HttpServlet {
 public void doGet(HttpServletRequest request,
 HttpServletResponse response) throws IOException, ServletException {

response.setContentType("text/html");
PrintWriter out = response.getWriter();
out.println("<html><head><title>Calling Another Servlet");
out.println("</title></head><body>");
out.println("<h1>Calling Another Servlet</h1>");

Chapter 20: Servlet Examples 213
out.println("<p>This text comes from testCallerInclude.");

// Get the ServletContext.
ServletContext sc = this.getServletContext();
// Wrap the servlet in a RequestDispatcher.
RequestDispatcher rd = sc.getRequestDispatcher("/servlet/includeMe");
if (rd !=null) {

 // Include the servlet.
 try {
 // Note that the included servlet has control over its own buffer
 // only. That is, it cannot access the calling servlet’s buffer.

 rd.include(request, response);
 }
 catch (Exception e) {
 sc.log("Problem invoking servlet.", e);
 }
}

 // End the HTML.
 out.println("</body></html>");
 }
}

Using the getResource method

You can use the ServletContext object’s getResource method to include content in
your servlet. The getResource method returns a URL object. You can then use the URL
object to access the content. One advantage of using the URL object is that you can
parse the content before returning to the browser.

The following example includes content via the getResource method:

import java.io.*;
import java.net.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class TestGetResource extends HttpServlet {

 public void doGet(HttpServletRequest request,
 HttpServletResponse response) throws IOException, ServletException {

response.setContentType("text/html");
ServletOutputStream out = response.getOutputStream();
out.println("<html><head><title>Including Content");
out.println("</title></head><body>");
out.println("<h1>Including Content through getResource</h1>");
out.println("<p>This text comes from the calling class.");

// Get the ServletContext.
ServletContext sc = this.getServletContext();
try {
 // Get the resource.
 URL u = sc.getResource("/includedText.htm");
 if (u !=null) {

214 Developing Applications with JRun
 // Access the content, casting to an InputStream
 InputStream in = (InputStream)u.getContent();

 byte[] buf = new byte[255];
 int numRead = in.read(buf);
 while(numRead != -1){
 out.write(buf, 0, numRead);
 numRead = in.read(buf);
 }

 }
 else {
 out.println("<p>u was null");
 }
}
catch (Exception e) {
 sc.log("Problem including content.", e);
}

 // End the HTML.
 out.println("</body></html>");
 }

}

C H A P T E R 2 1
Chapter 21 Creating Custom Tags and Tag
Libraries
This chapter describes how to enhance the usability of JSP pages by implementing
custom tags and tag libraries.

Contents

• About Custom Tags and Tag Libraries .. 216

• Coding Tag Libraries .. 216

216 Developing Applications with JRun
About Custom Tags and Tag Libraries
The JavaServer Pages Version 1.1 specification describes a framework for tag libraries.
This is a powerful capability that you can use to encapsulate sets of related
functionality. For complete information on the JSP Version 1.1 specification, see
http://java.sun.com/products/jsp/index.html.

A tag library consists of one or more actions (referred to as tags, or custom tags), each of
which performs processing, as coded in an associated Java tag handler class. The Java
developer defines the functionality (including attributes) of each custom tag, coding
the tag handlers and defining each custom tag in the Tag Library Descriptor (TLD) file.
The TLD file also defines additional information, such as required attributes and
whether the tag can contain a body.

If the custom tag creates a scripting variable, the Java developer must also create a Tag
Extra Information (TEI) file. A TEI file is a Java class that defines scripting variables
(and their scope) for use by JSP code. The TEI file can also be used to validate attributes
at translation time.

Java developers and JSP developers interact with tag libraries in different ways:

• The Java developer codes, documents, and packages the classes and supporting
files in a tag library.

• From the JSP developer’s perspective, a tag library contains custom tags used to
perform specific types of processing. The JSP developer needs to know the
location of the TLD file (or the URI given in the web.xml file’s taglib element),
the names of the custom tags in the library, tag attributes, scripting variables,
scripting variable usage, and scripting variable scope.

Coding Tag Libraries
The Java developer codes tag handlers, TEI classes (optional), supporting classes
(optional), and the TLD file. Additionally, the Java developer documents the names of
the custom tags in the library, tag attributes, scripting variables, scripting variable
usage, and scripting variable scope. The Java developer also creates the .jar file for the
tag library, placing it in WEB-INF/lib, optionally coding a taglib element in the
web.xml file for the Web application.

Save tag handlers and TEI classes in either of the following locations:

• WEB-INF/classes. This directory is a good location to save tag handlers and
TEI classes during preliminary development and testing. Before packaging the
tag library, however, you should save tag handlers and TEI classes in a .jar file
located in WEB-INF/lib.

• WEB-INF/lib. For packaging and deployment, save tag handlers, TEI classes,
and other related classes in a .jar file located in WEB-INF/lib.

For additional packing information, including recommended placement for the TLD
file, see “Packaging Tag Libraries” on page 234.

Chapter 21: Creating Custom Tags and Tag Libraries 217
Classes and interfaces

When coding custom tags and tag libraries, you use classes and interfaces from the
javax.servlet.jsp.tagext package, as shown in the following figure.

The classes and interfaces of primary interest are as follows:

• Tag interface. Defines the basic start and end methods that are invoked by the
associated start and end tags.

• BodyTag interface. Defines additional methods for use when your custom tag
interacts with body text, optionally modifying results or looping.

• TagSupport class. Implements the Tag interface. This is an optional helper class
that you can extend for tag handlers that do not interact with body text.

• BodyTagSupport class. Implements the BodyTag interface. This is an optional
helper class that you can extend for tag handlers that interact with body text.

For more information on the classes and interfaces used in tag library programming,
see the javadocs in the JRun docs directory.

How JSP developers use custom tags

JSP developers enable tag libraries through the taglib directive and by coding the
custom tag using a prefix:tagname convention, as shown in the following example:

<%@ taglib prefix="test" uri="DocSamples.tld" %>
<%-- This example combines the start and end tags. --%>
<test:hello/>

218 Developing Applications with JRun
A custom tag can include body text, although you can disallow body text in the TLD
file. Your tag handler can optionally interact with body text, as explained in
“Interacting with body content” on page 224.

You can optionally enable scripting variables and translation-time attribute validation,
as described in “Coding a TEI class” on page 230.

The remainder of this discussion includes the following topics:

• Coding a simple tag handler

• Creating a TLD file

• Interacting with attributes

• Interacting with body content

• Coding nested tag handlers

• Using a tag to create a scripting variable

Coding a simple tag handler

A simple tag handler overrides the doStartTag and (optionally) the doEndTag methods
(from the TagSupport or BodyTagSupport ancestor) and has no interaction with the
body text. A tag handler that has no body text interaction should extend the
TagSupport class. Note that when extending TagSupport, the doStartTag and
doEndTag methods use return values (defined as constants), as follows:

• doStartTag returns one of the following values:

• EVAL_BODY_INCLUDE — Allow body text (including JSP code) between the
start and end tags. Note, however, that body text is not available to the
doEndTag method. To evaluate body text, create a class that extends
BodyTagSupport, as described in “Interacting with body content” on
page 224.

• SKIP_BODY — Ignore body text. Any text between the start and end tags
is not evaluated or displayed.

• doEndTag returns one of the following values:

• EVAL_PAGE — Continue evaluating the page.

• SKIP_PAGE — Ignore the remainder of the page.

The following tag handler outputs HTML from the doStartTag and doEndTag methods.
To use a tag handler in a JSP page, you must define it in a TLD file and invoke it from a
JSP page:

import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.*;
import java.io.IOException;

public class SimpleTag extends TagSupport {
 /**
 * Executes when the tag is started.
 */

Chapter 21: Creating Custom Tags and Tag Libraries 219
public int doStartTag() throws JspException {
 try {
 pageContext.getOut().print("<h2>Hello from doStartTag()</h2>");
 // Allow text in the body of the tag.
 return EVAL_BODY_INCLUDE;
 }
 catch(IOException ioe) {
 throw new JspException(ioe.getMessage());
 }
 }

 /**
 * Executes with the end tag.
 */
 public int doEndTag() throws JspException {
 try {
 pageContext.getOut().print("<h2>Hello from doEndTag()</h2>");
 // Continue evaluating the page.

 return EVAL_PAGE;
 }
catch(IOException ioe) {

 throw new JspException(ioe.getMessage());
 }
 }
}

Creating a TLD file

The TLD is a text file in XML format that describes the tag library. JRun uses the TLD
file to help interpret pages that contain taglib directives. The taglib directive
includes the uri attribute, which points to the TLD file. For more information on the
taglib directive, see “Packaging Tag Libraries” on page 234.

The taglib element is the root of the TLD file. It can contain the following elements:

• tlibversion. Tag library version.

• jspversion (optional). JSP version required by the tag library.

• shortname. Default short name.

• uri (optional). A URI that identifies the tag library uniquely.

• info (optional). Intended for tag-library usage information.

• tag. Custom tag information. A TLD file can have one or more tag elements and
can have one id attribute, which is used by external tools. Each element can
include the following subelements:

• name. Custom tag name.

• tagclass. Class name for the tag handler.

• teiclass. Class name for the TEI file.

220 Developing Applications with JRun
• bodycontent. Identifies body content type. Valid values are
tagdependent (tag-dependent body content, for example, SQL
statements), jsp (JSP and HTML body content), and empty (no body
content is allowed). If you specify empty, the body of the custom tag
must be empty.

• info (optional). Custom tag usage information.

• attribute (optional). Attribute information. A Tag element can have
zero or more Attribute elements.

For complete information on TLD files and the TLD format, refer to the JavaServer
Pages 1.1 Specification.

Defining tags in a TLD file

You define custom tags in a TLD file through the tag element and its subelements. The
main purpose of the tag element is to associate a custom tag name (used in a JSP file)
with a tag handler’s class file. If the custom tag creates scripting variables, you must
also include the teiclass element, which specifies the name of the tag’s TEI class file.

You can also use the tag element to define attributes. Attribute elements are not
required but can be useful in certain situations:

• If the attribute is required, include <required>true</required> in the
attribute element.

• If the attribute can be calculated by a runtime scriptlet expression, include
<rtexprvalue>true</rtexprvalue> in the attribute element.

For more information on custom tag attributes, see “Interacting with attributes” on
page 221.

Example TLD file

The following TLD file defines a tag for the SimpleTag class, shown in “Coding a simple
tag handler” on page 218:

<?xml version="1.0" ?>

<taglib>
 <tlibversion>1.0</tlibversion>
 <jspversion>1.1</jspversion>
 <shortname>JRun Doc Samples</shortname>
 <tag>
 <name>hello</name>
 <tagclass>SimpleTag</tagclass>
 <bodycontent>JSP</bodycontent>
 </tag>
</taglib>

Chapter 21: Creating Custom Tags and Tag Libraries 221
Invoking a simple custom tag

You use the taglib directive to enable custom tag usage within a JSP page. The taglib
directive specifies a prefix that you then use in conjunction with a tag name to invoke a
specific tag.

The following JSP code invokes the hello tag defined in the example TLD file:

<html>
<body>
<h1>Simple Custom Tag</h1>
<%@ taglib prefix="test" uri="DocSamples.tld" %>

<test:hello/>

</body>
</html>

Interacting with attributes

You can code tag handlers that accept attributes. To enable attribute functionality, a
tag handler must do the following:

• Define a object-scoped variable for each attribute.

• Define setter (and optionally getter) methods for each attribute. A setter
method starts with set and is followed by the initial-capped variable name. For
example, for variable foo, you implement a setFoo method.

You can optionally customize attribute usage and behavior through the following:

• TLD file. Define attributes in a TLD file when you want to specify required
attributes and when the attribute can take a JSP runtime expression. For more
information, see “Defining attributes in a TLD file” on page 223.

• TEI class. Define attributes in a TEI class when they are to be used as scripting
variables and when you want to enable validation by overriding the isValid
method. For more information, see “Coding a TEI class” on page 230.

TLD file specifications and TEI class files provide powerful validation functionality.
However, the only required functionality is bean-like setter methods that interact with
class-scoped variables. For example, to enable the following tag attribute usage:

...
<test:hello username="Joe"/>
...

A tag handler must implement the following:

import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.*;
import java.io.IOException;

public class TestParms extends BodyTagSupport
{
 // Object-scoped variable with same name as attribute.

222 Developing Applications with JRun
 String username;

 // setVariablename method called by the JSP compiler.
 public void setUsername(String username)
 {
 this.username = username;
 }

 // Optional getter method.
 public String getUsername()
 {
 return username;
 }
...

The following complete example of a sample tag handler uses attributes to emulate the
functionality provided by the JSP include action element:

import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.*;
import javax.servlet.*;
import java.io.IOException;

public class TestInclude extends TagSupport
{
 // This is required so there’s no default.
 String page;
 // Default is true.

String flush = "true";

 // Setter methods.
 public void setPage(String page)
 {
 this.page = page;
 }
 public void setFlush(String flush)
 {

// Save as lowercase.
this.flush = flush.toLowerCase();

 }

 public int doStartTag() throws JspException
 {
 // Ignore body text.

 return SKIP_BODY;
 }

 // doEndTag does all the work.
public int doEndTag() throws JspException

 {
 try {

 ServletContext sc = pageContext.getServletContext();
 RequestDispatcher rd = sc.getRequestDispatcher(page);

 if (rd !=null) {
 // Access request and response.

Chapter 21: Creating Custom Tags and Tag Libraries 223
 ServletRequest request = pageContext.getRequest();
 ServletResponse response = pageContext.getResponse();

 // Flush the buffer, if requested.
if (flush.equals("true")) {
 pageContext.getOut().flush();
 }
// Include the file.
rd.include(request, response);
return EVAL_PAGE;

 }
 }
catch(IOException ioe) {

 throw new JspException(ioe.getMessage());
 }

 catch (Exception e) {
 pageContext.getServletContext().log("Error with " + page, e);
 }

 return EVAL_PAGE;
 }
}

Defining attributes in a TLD file

Use the attribute element to define attributes in a TLD file. This element has the
following subelements:

• name. Attribute name.

• required. Indicates whether the attribute is required. Set this to either true or
false.

• rtexprvalue. Indicates whether the custom tag can use a runtime expression
for the value of this attribute. Set this to either true or false.

The following example TLD entry establishes a required attribute and an optional
attribute:

<?xml version="1.0" ?>

<taglib>
 <tlibversion>0.0</tlibversion>
 <jspversion>1.0</jspversion>
 <shortname>test</shortname>
 <tag>
 <name>include</name>
 <tagclass>TestInclude</tagclass>
 <bodycontent>empty</bodycontent>
 <attribute>
 <name>page</name>
 <required>true</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 <attribute>
 <name>flush</name>
 <required>false</required>

224 Developing Applications with JRun
 <rtexprvalue>false</rtexprvalue>
 </attribute>
 </tag>
 <tag>
 <name>hello</name>
 <tagclass>HelloTag</tagclass>
 <teiclass>HelloTEI</teiclass>
 <bodycontent>JSP</bodycontent>
 </tag>
</taglib>

Coding attributes in a JSP page

Attributes are coded as part of the custom tag, as shown in the following example:

<html>
<body>

<%@ taglib prefix="test" uri="test.tld" %>
<h1>Testing Custom Tags with Parameters</h1>

<test:include page="/includedText.htm" flush="true" />

</body>
</html>

Interacting with body content

The Tag interface and the BodyTag interface both allow a custom tag’s body to contain
template text, JSP scripting elements, and nested custom tags. If your custom tag does
not interact with body content, extend the TagSupport class and return
EVAL_BODY_INCLUDE in the doStartTag method. However, if your custom tag needs to
process, loop through, or modify body content, extend the BodyTagSupport class,
which provides the doInitBody and doAfterBody methods.

Note You can disallow body content by specifying empty for the custom tag’s
bodycontent element in the TLD file. Your tag handler can ignore body
content by returning SKIP_BODY in the doStartTag method.

The BodyContent object is a subclass of JspWriter. (JspWriter is the writer used
internally for the JSP out variable.) The BodyContent object is available to doInitBody,
doAfterBody, and doEndTag through the bodyContent variable (note the capitalization
difference between the BodyContent object and the bodyContent variable). You can
integrate this object’s contents with the original JspWriter during the doEndTag
method. The BodyContent object contains methods that you use to write output as
well as methods to read, clear, and retrieve its contents. For example, you can use
bodyContent.getString to retrieve the writer’s contents, optionally modifying the
contents before integrating them with the original JspWriter.

If the doAfterBody method returns EVAL_BODY_TAG, JRun loops back and reexecutes
the body. This is a powerful capability that allows you to loop over repetitive data, such
as enumerations and database result sets.

Chapter 21: Creating Custom Tags and Tag Libraries 225
Simple example

The following example illustrates simple usage of the doInitBody and doAfterBody
methods. It also shows how to integrate bodyContent output with the output stream.

import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.*;
import java.io.IOException;

public class TestBody extends BodyTagSupport
{

 public int doStartTag() throws JspException {
 try {
 pageContext.getOut().print("<h2>We’re in doStartTag()</h2>");
 return EVAL_BODY_TAG;
 }

catch(IOException ioe) {
 throw new JspException(ioe.getMessage());
 }
 }

public void doInitBody() throws JspException {
 try {

 // Remember that this is a different writer than the one
 // you have in doStartTag and doEndTag.
 bodyContent.print("<h2>We’re in doInitBody()</h2>");
 }
catch(IOException ioe) {

 throw new JspException(ioe.getMessage());
 }

}

public int doAfterBody() throws JspException {
 try {

 // Remember that this is a different writer than the one
 // you have in doStartTag and doEndTag.
 bodyContent.print("<h2>We’re in doAfterBody()</h2>");

 // return EVAL_BODY_TAG; // Use this to loop
 return SKIP_BODY;
 }
catch(IOException ioe) {

 throw new JspException(ioe.getMessage());
 }

}

 public int doEndTag() throws JspException
 {
 try {
 // Write from bodyContent writer to original writer.

pageContext.getOut().print(bodyContent.getString());
 //// For large buffers, the following code may be more
 //// efficient than the previous line.
 //// Get the original (enclosing) writer.

226 Developing Applications with JRun
// JspWriter jOut = bodyContent.getEnclosingWriter();
//// Append body output with previous writer.
//bodyContent.writeOut(jOut);

// Now we’re back to the original writer.
pageContext.getOut().print("<h2>We’re in doEndTag()</h2>");

 return EVAL_PAGE;
 }
catch(IOException ioe) {

 throw new JspException(ioe.getMessage());
 }
 }
}

Looping example

By coding doAfterBody to return EVAL_BODY_TAG, you can construct a loop that
reexecutes a custom tag’s body.

Note A TEI class can control the scope of scripting variables used with custom
tags and looping. For more information, see “Coding a TEI class” on page
230.

The following example accepts an attribute of type Enumeration and loops through the
names and values in the Enumeration object (HTTP headers in this example).

import java.util.Enumeration;
import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.*;
import java.io.IOException;

public class TestBodyLoopHeaders extends BodyTagSupport {

 Enumeration thisEnum;

public void setThisEnum(Enumeration passedEnum) {
 this.thisEnum = passedEnum;
 }

 public int doStartTag() throws JspException {
 return EVAL_BODY_TAG;
 }

public void doInitBody() throws JspException {
 if (thisEnum.hasMoreElements()) {

 pageContext.setAttribute("nextElement", thisEnum.nextElement());
 }
}

public int doAfterBody() throws JspException {
 if (thisEnum.hasMoreElements()) {

 pageContext.setAttribute("nextElement", thisEnum.nextElement());
 return EVAL_BODY_TAG; // Loop

 }

Chapter 21: Creating Custom Tags and Tag Libraries 227
 else {
 return SKIP_BODY;

 }
}

 public int doEndTag() throws JspException
 {
 try {

// Write from bodyContent writer to original writer.
pageContext.getOut().print(bodyContent.getString());

 return EVAL_PAGE;
 }
catch(IOException ioe) {

 throw new JspException(ioe.getMessage());
 }
 }
}

The following JSP example invokes the previous tag handler.

<html>
<body>

<%@ taglib prefix="test" uri="DocSamples.tld" %>
<h1>Looping through Headers</h1>
<table border="1">
<tr>
 <th>Name</th>
 <th>Value</th>
</tr>
<test:enumloop thisEnum="<%= request.getHeaderNames() %>">
 <tr>
 <% String header = (String)pageContext.getAttribute("nextElement");%>
 <td><%= header %></td>
 <td><%= request.getHeader(header) %></td>
 </tr>
</test:enumloop>
</table>

</body>
</html>

Coding nested tag handlers

You can nest custom tags, regardless of whether you implement the Tag interface or
the BodyTag interface. When you nest tags, the tag handler for the nested tag can
obtain a reference to the parent class through the findAncestorWithClass method. By
casting this reference to the parent class, the nested tag handler can call methods in
the parent class. For example, the parent class might implement a method that allows
nested tag handlers to write to its output stream.

The following code shows a sample tag handler for a parent tag. It includes a method
that tag handlers for nested tags can call to update the output stream.

228 Developing Applications with JRun
import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.*;
import java.io.IOException;

public class TestBodyParent extends TagSupport
{
 String name;

 public void setName(String name)
 {
 this.name = name;
 }

 public int doStartTag() throws JspException {
 try {
 // Start by printing the parent name.
 pageContext.getOut().print("<h1>Parent: " + name + "</h1>");
 return EVAL_BODY_INCLUDE;
 }

catch(IOException ioe) {
 throw new JspException(ioe.getMessage());
 }
 }

 public int doEndTag() throws JspException
 {
 try {

// Add a ruler after the group.
pageContext.getOut().print("<hr>");

 return EVAL_PAGE;
 }
catch(IOException ioe) {

 throw new JspException(ioe.getMessage());
 }
 }

 public void setNestedName(String name) throws JspException {
 try {

// Print a nested name.
pageContext.getOut().print("<p>Nested: " + name);

 }
catch(IOException ioe) {

 throw new JspException(ioe.getMessage());
 }
 }
}

The following code shows a sample tag handler for a nested tag. It updates the output
stream by calling a method on the parent tag handler.

import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.*;
import java.io.IOException;

public class TestBodyNest extends TagSupport

Chapter 21: Creating Custom Tags and Tag Libraries 229
{
 private String name;

private TestBodyParent parent = null;

 public void setName(String name)
 {
 this.name = name;
 }

 public int doStartTag() throws JspException {
 // Locate and save reference to parent.

 Tag t = findAncestorWithClass(this, TestBodyParent.class);
 if (t == null) {
 throw new JspException("TestBodyNest must be in TestBodyParent.");
 }
 else {
 parent = (TestBodyParent)t;
 return EVAL_BODY_INCLUDE;
 }
 }

 public int doEndTag() throws JspException
 {

// Copy name to parent.
parent.setNestedName(name);

 return EVAL_PAGE;
 }
}

The following JSP example uses the parent tag and nested tags:

<html>
<body>

<%@ taglib prefix="test" uri="DocSamples.tld" %>
<h1>Testing Nested Custom Tags</h1>

<test:bodyparent name="Johnson">
 <test:bodynest name="Lorna"/>
 <test:bodynest name="Gretchen"/>
 <test:bodynest name="Brian"/>
</test:bodyparent>

</body>
</html>

Using a tag to create a scripting variable

Your custom tag can define scripting variables, which can then be made available to
scriptlets and other custom tags in a JSP page.

Note Although tag attributes can be used in defining scripting variables (for
example, through the ID attribute), it is important to remember that

230 Developing Applications with JRun
there is no direct relationship between tag attributes and scripting
variables.

Coding a TEI class

JRun uses the TEI class at translation time to enable scripting variables and optionally
perform attribute validation. A TEI file is a Java class that extends the TagExtraInfo
class. The getVariableInfo method has the following signature:

public VariableInfo[] getVariableInfo(TagData tagData) { }

The tagData parameter contains the name/value pairs of the attributes, which you can
optionally use to define scripting variables. For example, the useBean tag uses the id
attribute to create a scripting variable.

Within the getVariableInfo method, you establish an array of VariableInfo objects
and populate it with one VariableInfo object per scripting variable. The constructor
for the VariableInfo object takes the following parameters:

• varName is a String that specifies the scripting variable name.

• className is a String that specifies the class for the scripting variable.

• declare is a boolean that indicates whether the constructor should declare a
new variable.

• scope is an int that specifies the scope for the scripting variable. Specify
AT_BEGIN, NESTED, or AT_END, as described in the following table.

Synchronization is the act of taking an object out of the page context and assigning it
to the scripting variable. The following table describes scope, usage, and
synchronization for variables named in the getVariableInfo method.

TEI class scopes

Scope JSP usage JSP page
synchronization

Where set and reset
by the tag handler

AT_BEGIN In the body of the tag
and in the remainder
of the JSP page.

JRun resets this
scripting variable
with each iteration
through the body.

In doInitBody and
doAfterBody (if
implementing BodyTag).
Otherwise in doStartTag
or doEndTag.

NESTED In the body of the tag. JRun resets this
scripting variable
with each iteration
through the body.

In doInitBody and
doAfterBody (if
implementing BodyTag).
Otherwise in doStartTag.

AT_END In the remainder of the
JSP page.

JRun sets this
variable after the
body completes
execution.

After doEndTag.

Chapter 21: Creating Custom Tags and Tag Libraries 231
The following example shows the Java code for a TEI class that defines three scripting
variables:

import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.*;
import java.io.IOException;

public class HelloTEI extends TagExtraInfo
{
 public VariableInfo[] getVariableInfo(TagData tagData)
 {
 VariableInfo[] vars = new VariableInfo[3];

 // Available in body and remainder of the page.
 vars[0] = new VariableInfo("foo", "java.lang.String", false,
 VariableInfo.AT_BEGIN);
 // Available after the custom tag for the remainder of the page.
 vars[1] = new VariableInfo("bar", "java.lang.String", true,
 VariableInfo.AT_END);
 // Available in tag body only.
 vars[2] = new VariableInfo("baz", "java.lang.String", true,
 VariableInfo.NESTED);
 return vars;
 }
}

Enabling scripting variables in a tag handler

It is the tag handler’s responsibility to add scripting variables to the pageContext
object. It defines these variables in different methods, depending on the scope
specified for the scripting variable. Additionally, for tag handlers that loop over body
text, the doAfterBody method can optionally update or reset scripting variables.

The following example shows how the tag handler sets scripting variables:

import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.*;
import java.io.IOException;

public class HelloTag extends BodyTagSupport {
 String to;

 public void setTo(String to) {
 this.to = to;
 }

 public int doStartTag() throws JspException {
 try {
 pageContext.getOut().print("Hello " + to);

 // The TEI file defines this scripting variable
// as AT_BEGIN so we define it here. We can optionally
// define it in doInitBody and (if looping) modify/reset it
// in doAfterBody.

232 Developing Applications with JRun
 pageContext.setAttribute("foo", "foo");
 return EVAL_BODY_TAG;
 } catch(IOException ioe) {
 throw new JspException(ioe.getMessage());
 }
 }

public void doInitBody() throws JspException {
 // The TEI file defines this scripting variable

// as NESTED so we define it here. We can optionally
// define it in doStartTag and (if looping) modify/reset
// it in doAfterBody.

 pageContext.setAttribute("baz", "baz");
}

 public int doEndTag() throws JspException {
 try {
 // This tag handler implements BodyTag (by extending

// BodyTagSupport) so we must integrate the body’s
// writer with the original writer.
pageContext.getOut().print(bodyContent.getString());

 // The TEI file defines this scripting variable
// as AT_END so we don’t have to define it
// until doEndTag.

 pageContext.setAttribute("bar", "bar");
 return EVAL_PAGE;

}
catch(IOException ioe) {

 throw new JspException(ioe.getMessage());
 }
 }
}

Using a scripting variable in a JSP page

The following JSP example uses the scripting variables defined in the previous TEI
class and tag handler:

<%@ taglib prefix="test" uri="test.tld" %>
<% String foo; %>

<test:hello to="World">
 <%-- baz is NESTED (available in body only) --%>
 <%= baz %>
 <%-- foo is AT_BEGIN (available in body and beyond) --%>
 <%= foo %>
</test:hello>
<%= foo %>
<%-- bar is AT_END (available after body only) --%>
<%= bar %>

Chapter 21: Creating Custom Tags and Tag Libraries 233
Using the isValid method

The TEI class can optionally override the isValid method to implement tag-specific
attribute validation. At translation time, JRun passes the isValid method a TagData
instance.

The isValid method can call TagData.getAttribute to access the value. If the
attribute’s definition in the TLD file enables runtime expressions, you can check for the
TagData.REQUEST_TIME_VALUE object, which indicates that the custom tag invocation
uses a runtime expression (so that validation is not possible). For more information on
runtime expressions, see “Defining attributes in a TLD file” on page 223.

The following example TEI file ensures that the value of the version attribute is less
than 5:

import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.*;
import java.io.IOException;

public class TestIsValidTEI extends TagExtraInfo
{
 // This example assumes one scripting variable

// (not relevant to this example).
public VariableInfo[] getVariableInfo(TagData tagData)

 {
 VariableInfo[] vars = new VariableInfo[1];
 vars[0] = new VariableInfo("foo", "java.lang.String", true,
 VariableInfo.AT_BEGIN);
 return vars;
 }

public boolean isValid(TagData data) {
 Object version = data.getAttribute("version");

 // This attribute allows runtime expressions so we
 // must check for REQUEST_TIME_VALUE.
 if (version != null && version != TagData.REQUEST_TIME_VALUE) {
 int iVersion = Integer.parseInt((String)version);

 // Version cannot be greater than 5.
 if (iVersion > 5) {
 return false;
 }
 else {
 return true;
 }
 }

 else {
 return false;
 }
}

}

234 Developing Applications with JRun
Using Tags in JSP Pages
The JSP developer enables a tag library by naming it in a taglib directive:

<%@ taglib prefix="test" uri="/WEB-INF/DocSamples.tld" %>

This example enables the tags described in the DocSamples.tld TLD file. This file is
located in the WEB-INF directory. To call a tag in this library, use the syntax
<prefix:tagname>, as shown in the following example:

<test:helloworld/>

A tag can take attributes, as shown in the following example:

<test:hellowithparm name="Joe"/>

A tag can optionally allow body content, which may or may not include JSP syntax or
other custom tags, as shown in the following example:

<test:bodyparent name="This Family">
 <test:bodynest name="Lorna"/>
 <test:bodynest name="Gretchen"/>
 <test:bodynest name="Brian"/>
</test:bodyparent>

For more information on custom tag usage in JSP files, refer to the JSP examples earlier
in this chapter.

Packaging Tag Libraries
The application developer delivers the tag libraries to the JSP developer. A deployable
tag library must incorporate tag handlers, TEI classes, and other supporting classes
into a .jar file. This .jar file must be located in the Web application’s WEB-INF/lib
directory.

Note You can optionally store the .jar file in an alternative location and
establish a virtual mapping for the Web application to that location. This
enables multiple Web applications to share a single copy of the tag
library. However, when packaging your Web application for deployment,
you should more the .jar file to WEB-INF/lib. For more information,
refer to the JRun Setup Guide.

Along with the .jar file and the TLD file, the package should include documentation
that describes the following:

• The name of each tag

• Required and optional attributes

• Which attributes can accept runtime expressions

• An indication whether each tag can accept body content

• Required parent tags, nested tags, or body content

Chapter 21: Creating Custom Tags and Tag Libraries 235
You should consider storing the TLD file in the location suggested by the JSP Version
1.1 specification, which is within the .jar file in META-INF/taglib.tld. This is the
suggested placement for authoring tool integration. If you don’t store the TLD file in
the .jar file, you should place it under the WEB-INF directory to ensure that it cannot
be viewed directly.

JSP developers reference the TLD file in different ways, depending on whether you
have defined the TLD file in web.xml:

• If web.xml includes a taglib element, the JSP developer specifies a taglib uri
attribute that corresponds to a taglib-uri entry in the web.xml file.

• If web.xml does not include a taglib element, the JSP developer codes a taglib
uri attribute that references the TLD file directly.

To define a taglib element in a web.xml file:

1. Code a begin taglib element:

<taglib>

2. Code a taglib-uri element. This element specifies the name that JSP developers
use in the JSP taglib directive:

<taglib-uri>/eisTaglib</taglib-uri>

3. Code a taglib-location element. This element specifies the path to the TLD file:

<taglib-location>/WEB-INF/tldHome/eisTaglib.tld</taglib-location>

4. Code an end taglib element.

</taglib>

JSP developers reference this example tag library through the following taglib
directive:

<%@ taglib prefix="eis" uri="/eisTagLib" %>

236 Developing Applications with JRun

C H A P T E R 2 2
Chapter 22 Servlet API Changes
This chapter describes changes in the Servlet API from 2.0 to 2.2.

Contents

• Servlet API Changes from 2.0 to 2.1 .. 238

• Servlet API Changes from 2.1 to 2.2 .. 240

238 Developing Applications with JRun
Servlet API Changes from 2.0 to 2.1
Servlet API version 2.1 contains API refinements and enhanced functionality.

API refinements

Servlet API version 2.1 contains the following refinements over previous versions:

• Changes in the log method

• ServletRequest.getRealPath has been deprecated

• URL case consistency

• Overriding the init method

• New getSession method

• Setting a status code

Changes in the log method

ServletContext.log(Exception e, String msg) has been deprecated and is
replaced by ServletContext.log(String message, Throwable t).

Additionally, Servlet API 2.1 includes a GenericServlet.log(String message,
Throwable t) method (in addition to the previously available
GenericServlet.log(String message).

ServletRequest.getRealPath has been deprecated

ServletRequest.getRealPath(String path) has been deprecated. You should
replace references to this method with ServletContext.getRealPath(String path).

URL case consistency

Servlet API 2.1 provides consistent capitalization by changing Url to URL for the
following methods:

• HttpServletRequest.isRequestedSessionIDFromURL

• HttpServletResponse.encodeURL

• HttpServletResponse.encodeRedirectURL

Overriding the init method

When overriding init(ServletConfig config), you must always allow
GenericServlet to save a reference to config by coding a call to super.init(config).
Servlet API 2.1 provides an init() method (no arguments), which does not require the
call to super.init(config).

Chapter 22: Servlet API Changes 239
New getSession method

Servlet API 2.1 includes the HttpServletRequest.getSession() method, which you
can use instead of HttpServletRequest.getSession(true).

Setting a status code

HttpServletResponse.setStatus(int sc, String sm) has been deprecated.
Instead, use HttpServletResponse.setStatus(int sc), followed by
HttpServletResponse.sendError(int sc, String msg).

Default getParameter behavior

In Servlet API 2.1, if you call getParameter(String name) for a parameter with
multiple values, the method always returns the first value. In previous versions, this
behavior was server-dependent.

No access to servlet references

ServletContext.getServlet(String name) and
ServletContext.getServletNames() have been deprecated in Servlet API 2.1.

No access to other sessions

HttpSession.getSessionContext() has been deprecated in Servlet API 2.1.

Enhanced functionality

Servlet API 2.1 contains the following enhancements:

• Request dispatching

• Accessing resources

• Nested exceptions

• Sharing attributes through ServletContext

• Controlling session timeout

• Accessing version information

Request dispatching

You can use the RequestDispatcher interface to forward processing to another servlet
or include another servlet’s output into the calling servlet’s output.

Accessing resources

You can use the ServletContext.getResource(String uripath) method to return a
URL object, which you can then use to access the actual resource.

240 Developing Applications with JRun
Nested exceptions

The ServletException exception can act as a wrapper around the root exception,
providing visibility into the underlying exception.

Sharing attributes through ServletContext

The ServletContext object adds the following methods, which you can use to share
attributes among servlets:

• setAttribute(String name, Object object)

• getAttribute(String name)

• getAttributeNames()

• removeAttribute(String name)

Controlling session timeout

You can control session duration through the
HttpSession.setMaxInactiveInterval(int interval) method.

Accessing version information

You can use the ServletContext.getMajorVersion() and
ServletContext.getMinorVersion() methods to access the Servlet API version.

Servlet API Changes from 2.1 to 2.2
Servlet API version 2.2 contains API refinements, one major enhancement area - Web
applications- and additional enhanced functionality.

API refinements

Servlet API version 2.2 contains the following refinements over previous versions:

• Enhanced request dispatching

• Enhanced redirection

Enhanced request dispatching

Servlet API 2.2 includes the ServletContext.getNamedDispatcher(String path)
method, which you can use to dispatch a component based on its registered name.

Additionally, you can use the ServletRequest.getRequestDispatcher(String path)
method, which uses a relative URL target
(ServletContext.getRequestDispatcher(String path) takes a fully qualified URL).

Chapter 22: Servlet API Changes 241
Enhanced redirection

HttpServletResponse.sendRedirect(String url) supports relative URLs.

Web applications

A Web application consists of servlets, JSP documents, HTML documents, images, and
other resources. You place these resources according to a predefined directory
structure, such that they can be deployed to any servlet-enabled Web server.

Two applications can share data using a common database for a data repository. In
this way, both applications can access the same information. For example, an e-
commerce Web site may consist of several applications that share a common
database. Customers would be identified by a login name and password or some other
form of identifier that allows each application to access information about the users
common to all applications, such as shopping cart, payment information, and
address.

Another mechanism for sharing data among applications is through the JRun support
for EJB. For more information on using EJB, see Chapter 30.

A single JRun JVM can support multiple Web applications. One of the questions that
you must answer when developing Web applications is where you draw a boundary
between applications. That is, can your application exist in the same JRun JVM as other
applications, or must it be in separate JVMs?

One factor that influences this decision is error handling. Since all Web applications in
the same JRun JVM execute within the same process, an error in one application can
bring down the entire JVM. If this error handling outcome is not acceptable, then you
should put your applications in different JRun JVMs.

Also, each JRun JVM can have attributes unique to the JVM that are required by certain
applications. For example, since each JRun JVM can use a different Java JVM, you may
decide to isolate your applications by JVM type.

Finally, application security is determined at the JRun JVM level. If two applications
require different security management systems, you should put them in separate JRun
JVMs.

For more information on Web applications, refer to the Java Servlet API Version 2.2
specification.

WAR files

WAR stands for Web application archive and refers to two things:

• A Web application archive (WAR) file, which you use to deploy a Web
application. Upon deployment, the WAR file must be expanded into directories.

• A directory structure that minimally includes the following:

• Application root directory

• Approot/WEB-INF directory

242 Developing Applications with JRun
• Approot/WEB-INF/web.xml file

• Approot/WEB-INF/classes directory

• Approot/WEB-INF/lib directory

The WEB-INF directory

The WEB-INF directory includes the web.xml file, a lib directory, and a classes
directory.

• The web.xml file, also known as the deployment descriptor, contains
information about the Web application. This information includes application
init parameters, servlet init parameters, servlet mappings, MIME-type
mappings, and security information.

• The classes directory contains servlet .class files.

• The lib directory contains .jar files used by the servlets in the Web application
as well as tag libraries.

One ServletContext per Web application

All the servlets in a Web application share a single ServletContext. To access a Web
application’s initialization parameters, use the
ServletContext.getInitParameter(String name) and
ServletContext.getInitParameterNames() methods.

Other enhanced functionality

Servlet API version 2.2 contains the following additional enhancements:

• Response buffering

• Support for multiple header values

• Temporary directory support

• Accessing a servlet’s name

• Internationalization

• Security

Response buffering

Response buffering allows you to control whether your servlet buffers its response. It
also allows you to control the size of the buffer. The ServletResponse object contains
the following methods to support response buffering:

• setBufferSize(int size)

• getBufferSize()

• isCommitted()

Chapter 22: Servlet API Changes 243
• reset()

• flushBuffer()

Support for multiple header values

The HttpServletRequest object includes the getHeaders(String name) method to
retrieve multi-value headers. This is especially useful when implementing multilingual
support through the Accept-Language header, which can handle multiple header
values.

You can also set multiple values using HttpServletRequest.addHeader(String
name, String value), HttpServletRequest.addIntHeader(String name, int
value), and HttpServletRequest.addDateHeader(String name, long date).

Temporary directory support

Servlet API 2.2 requires that each servlet context offer a private temporary working
directory. To determine the location of a servlet context’s temporary directory, access
the ServletContext attribute javax.servlet.context.tempdir. The object
associated with this attribute is of type java.io.File. Use code similar to the
following:

...
ServletContext sc = this.getServletContext();
File tempDir = (File) sc.getAttribute("javax.servlet.context.tempdir");
...

Accessing a servlet’s name

You can use the GenericServlet.getServletName() method to access a servlet’s
registered name. If the servlet has not been registered, the method returns the servlet’s
class name.

Internationalization

You can use the ServletRequest.getLocale() method to access a Locale object
indicating the client’s preferred locale. The locale returned is based on the Accept-
Language header. If this header is not provided, the method returns the default locale
for the server. You can also use the ServletRequest.getLocales() method to access
an Enumeration of Locale objects indicating acceptable locales.

You can use the HttpServletResponse.setLocale(Locale loc) method to specify
the locale.

Security

A Web application can contain role-based security information, which specifies that
access to specified pages is only authorized for users in a particular role.

Servlet API 2.2 includes the HttpServletRequest.getUserPrincipal() and the
HttpServletRequest.isUserInRole(String role) methods. It also includes the

244 Developing Applications with JRun
HttpServletRequest.isSecure() method, which returns true if the request used
HTTPS.

For more information on roles and security in Web applications, refer to the Java
Servlet API Version 2.2 specification.

Se c t i o n IV
Developing Enterprise
JavaBeans Section IV
This section describes how to create Enterprise JavaBeans with JRun.

Contents

Directories for EJB.. 247

Properties ... 253

Resource Management.. 261

Developing Beans .. 267

Bean Managed Persistence 275

Container Managed Persistence 281

Java Messaging .. 291

Using Servlets to Access EJBs................................ 319

Advanced Techniques.. 329

Using the EJB Engine ... 337

C H A P T E R 2 3
Chapter 23 Directories for EJB
This chapter describes the portions of the JRun directory structure that apply to the
EJB engine. For complete information on the JRun directory structure, refer to the
JRun Setup Guide.

Contents

• Structure ... 248

248 Developing Applications with JRun
Structure
The following illustration shows the EJB-related portion of the JRun directory structure
following a full installation:

Each directory is described in the paragraphs that follow.

JRun Home

JRun home represents the directory into which JRun was installed. The variable
JRUN_HOME is used throughout the documentation to represent the full path name. For
example, if JRun were installed into /opt/jrun, then JRUN_HOME=/opt/jrun; if JRun
were installed into C:\Program Files\Allaire\JRun, then
JRUN_HOME=C:\Program Files\Allaire\JRun.

Chapter 23: Directories for EJB 249
The following table describes the files installed in the JRUN_HOME directory.

server/servername/deploy

The /deploy directory is used during bean deployment by the Deploy tool. The Deploy
tool will use the .jar files containing the bean’s implementation, home and remote
interfaces, deployment descriptor (optional), property files, and manifest to create the
home and remote object implementations. After compiling the generated
implementations and stubs, the Deploy tool adds the resulting class files into the
ejipt_objects.jar and ejipt_exports.jar files. The Deploy tool also generates the
runtime.properties file. See “Deploying Enterprise JavaBeans” on page 351. At
startup, JRun copies the contents of the deploy directory to the /runtime directory.

docs

This directory contains the documentation for JRun. This includes HTML-format
JavaDocs as well as all JRun documentation in PDF format. This directory is not
installed if the minimal installation option is selected.

lib

The lib directory contains required .jar files and other property files:

JRUN_HOME Directory Contents

File Description

readme.txt Contains important installation information.

relnotes.htm Contains the JRun Release Notes.

/lib Contents

File Description

ejipt.jar Contains all of the server related classes.

ejipt_tools.jar Contains the classes for the Deploy and Server tools.

ejipt_client.jar Contains client related classes and stubs. This file must be
installed on all clients.

ejipt_jms_client.jar Contains client related classes for JMS. This file must be
installed on clients that will use the JMS services.

ejipt_ejbeans.jar Contains implementations of the Ejipt default EJBeans.

250 Developing Applications with JRun
lib/ext

The ext directory contains additional .jar files. These are standard extensions to the
Sun JDK. These files are provided as a convenience; they are also available directly
from Sun. You should ensure that ejb.jar, jms.jar, jndi.jar, and jta.jar are also
in the lib/ext directory of your active JRE. If not, copy them from this directory.

default_exports.jar Contains the required classes that each
ejipt_exports.jar must include. Used internally by
the Deploy tool.

default_objects.jar Contains the required classes that all
ejipt_objects.jar’s must include. Used internally by
the Deploy tool.

jrun.policy Security policy that allows access to resources in the VM.

ejipt.properties Contains the default property configuration. See
“Properties” on page 253

/ext The lib directory also contains the /ext subdirectory,
described next.

/lib Contents (Continued)

File Description

/lib/ext Contents

File Description

ejb.jar The Enterprise JavaBeans API (1.1).

jdbc.jar The JDBC API (2.0).

jms.jar The Java Message Service API (1.0).

jndi.jar The Java Naming & Directory Service API (1.2).

jta.jar The Java Transaction API (1.0).

jaxp.jar Java API for XML parsing (1.0). This file is used by the
servlet engine.

servlet.jar The Java Servlet API (2.2). This file is used by the servlet
engine.

Chapter 23: Directories for EJB 251
server/servername/runtime

JRun uses the /runtime directory for loading beans and properties at startup. The EJB
engine manages this directory and modifying the files in this directory is generally not
recommended. In addition to the deployed bean jars, JRun copies the following files
from the /deploy directory to the /runtime directory at start-up:

At startup JRun determines if the contents of the /deploy directory have changed since
the server was previously run. If so, JRun will check time stamps and copy newer files
to the /runtime directory.

In addition to the above files, there is usually at least one yourbeans_ejb.jar file in
the /runtime directory.

At startup JRun will create the following files if they are not found:

server/servername/runtime/classes

The classes directory contains bean classes that the EJB engine loads dynamically
when you issue the load command. You should use dynamic bean loading for testing

Runtime Directory Contents

File Name Description

ejipt_exports.jar This file contains the stubs for the object and any additional
classes that will be exported to clients on demand. This file is
created by the Deploy tool and is copied to the /runtime
directory by JRun at startup.

ejipt_objects.jar The remote and home interface implementations (ejb
objects). This file is created by the Deploy tool and is copied to
the /runtime directory by JRun at startup.

runtime.properties This file is generated by the Deploy tool in the /deploy
directory and is copied to the /runtime directory by JRun at
startup.

Runtime Directory Generated Files

File Name Description

ejipt.cache This file is used by the server for caching session bean instances.
This file is cleared each time JRun is started.

instance.store The default object store. This file is used for persisting beans and is
not automatically cleared.

252 Developing Applications with JRun
and development purposes only. After using dynamically loaded beans you should be
sure to integrate updated classes into your EJB .jar file.

You use this directory for bean implementation classes only; the EJB engine does not
load home and remote interfaces dynamically. For more information, see “Using
Dynamic Bean Loading” on page 359

samples

The samples directory contains .java, make and properties files for sample EJB
applications. These samples include both entity and session beans. This directory is
not installed if the minimal installation is selected. See the JRun Samples Guide for
detailed descriptions of the samples provided.

C H A P T E R 2 4
Chapter 24 Properties
This chapter describes how properties can be set and also how the server determines
when a property applies.

Contents

• Overview ... 254

• Setting Server Properties ... 254

• Setting Container Properties ... 254

• Setting Bean Properties ... 255

• Examples... 255

• Summary... 259

254 Developing Applications with JRun
Overview
The EJB engine relies on properties implemented by standard java.util.Properties
for setting its deploy and runtime environments. Properties are also used to configure
transactions, security, persistence and other services.

For bean properties, the EJB engine also supports properties defined via XML-based
deployment descriptors.

Properties are accessible to both containers and deployed beans at runtime and can be
overridden at the server, container or deployed bean level. The properties files can be
created and maintained using any text editor; they have a simple key=value syntax.
For a complete list of available properties see the EjiptProperties API
documentation, provided with the JRun JavaDocs files.

Properties can be set using different methods. The properties files can be directly
modified to permanently set properties to a specific value. Properties can also be set at
runtime by including them on the command line. Deployed beans can also set
properties at run time.

Setting Server Properties
During startup, JRun first creates a server properties list. It then loads all the properties
from the ejipt.properties file into this list. Any command line property settings are
loaded next, allowing for the overriding of ejipt.properties from the command line.

Lastly, either the deploy or the runtime properties are loaded into the server properties
list depending on whether or not Deploy tool is used. The Deploy tool loads the
deploy.properties and generates a corresponding runtime.properties file. The EJB
engine itself will only load a previously generated runtime.properties file.

The EJB engine also uses properties defined in global.properties.

Developers are discouraged from directly editing the runtime.properties file as any
subsequent running of the Deploy tool will cause those changes to be lost.

Setting Container Properties
The EJB engine creates a container for each jar file listed in the ejipt.ejbJars
property of the deploy.properties file. If the ejipt.ejbJars property is not present,
a container will be created for every jar file found in the deploy directory excluding the
ejipt_objects.jar, ejipt_exports.jar and extra_exports.jar files.

Every container in the EJB engine has its own property list that defaults to the server
properties list. The top level default.properties file from a jar will be loaded into this
property list, possibly overriding previously loaded server properties.

Chapter 24: Properties 255
Setting Bean Properties
You can define bean properties through either properties files or a deployment
descriptor. When you use using a descriptor file, name it ejb_jar.xmland store it in
the META-INF directory of the .jar file. When the EJB engine encounters such a file in
the .jar file, it uses the bean properties from the descriptor rather than the bean
properties and default properties files. If the ejb_jar.xml file is not present, the EJB
engine uses bean-level properties files as well as the default properties file. For
complete information on the elements required in an XML-based deployment
descriptor, refer to the EJB Version 1.1 specification.

When defining bean properties through a descriptor file, you include EJB engine-
specific properties by using the env-entry, env-entry-name, and env-entry-value
elements, as shown in the following example:

<env-entry>
 <env-entry-name>propertyname</env-entry-name>
 <env-entry-value>propertyvalue</env-entry-value>
</env_entry>

EJB engine-specific properties typically start with ejipt. Refer to
JRUN_HOME/samples/sample 1a/Meta-inf/ejb_har.xml for an example of the
env-entry element.

When deployed beans are loaded by the server, a new property list will be created for
each deployed bean. This property list defaults to the property list of the bean’s
container and is accessible to bean instances through the java:comp/env JNDI
context. This mechanism allows for read-only sharing of all system/server/container
properties by each deployed bean.

Examples
The following examples help to illustrate the various ways in which properties can be
set. The first example illustrates overriding properties from the command line, the
second example illustrates setting properties in the deploy and default properties files,
the third example overrides a property at the deployed bean level and the fourth
example overrides a bean level property from the command line.

Command Line Overrides

This example overrides the ejb.sessionTimeout property. Assume
ejb.sessionTimeout is set to 900 (seconds) in the ejipt.properties file in
JRUN_HOME/lib. This example changes the value to 300 at run-time by including the
-Dejb.sessionTimeout=300 parameter on the command line when JRun is started:

> cd JRUN_HOME
> java -Dejb.sessionTimeout=300 -classpath lib/ejipt.jar

allaire.ejipt.Ejipt

256 Developing Applications with JRun
This will result in ejb.sessionTimeout with a value of 300 being added to the server
property list, effectively overriding the value of 900 originally obtained from the
ejipt.properties file.

Calls by any deployed beans to
EJBContext.getEnvironment().getProperty(“ejb.sessionTimeout”) will return
the value 300 because it is encountered first in the property list chain.

Properties File Overrides

This example also overrides ejb.sessionTimeout for container1. However, this time it
sets the value in the default.properties file to 300. It also sets the server session
timeout through the deploy.properties file. Again, assume that
ejb.sessionTimeout is set to 900 (seconds) in the ejipt.properties file.

The following entry would be in default.properties for ‘container1’:

ejb.sessionTimeout=1800

The deploy.properties file would contain the following entry:

ejb.sessionTimeout=300

The resulting property lists looks like this:

bean5

bean1

container1
properties

bean2

container2
properties

server properties

bean3

bean4

ejb.sessionTimeout 900ejb.sessionTimeout 300

ejipt.properties

Chapter 24: Properties 257
As a result, all beans in ‘container1’ will have an ejb.sessionTimeout value of 1800
and deployed beans in all other containers will have an ejb.sessionTimeout value of
300.

Bean Property Overrides

This example overrides a property at the deployed bean level. Assume that the
property ejb.isReentrant is set to false in the ejipt.properties file. (Note: this
specific property defaults to false.) Also assume that there is a deployed bean named
Looper and that Looper is reentrant. To indicate to the EJB engine that it should not
prohibit this behavior with Looper, set ejb.isReentrant=true in Looper.properties.

bean5

bean1

container1
properties

bean2

container2
properties

server properties

bean3

bean4

ejb.sessionTimeout 900ejb.sessionTimeout 300

ejb.sessionTimeout 1800

ejipt.properties

258 Developing Applications with JRun
When Looper is deployed, the server creates its property list. The entry
ejb.isReentrant=true is added to Looper’s property list. As a result, calling
EJBContext.getEnvironment().getProperty(“ejb.isReenterant”) will return true
for all instances of Looper while returning false for all other beans. You use this
mechanism to override properties regardless of whether they are defined via
properties files or an XML descriptor file.

Runtime Bean Property Overrides

This example overrides ejb.sessionTimeout for an EJB named bean2 using the
command line. Bean properties can be overridden at the command line by prefixing
the bean’s home name to a property. Doing this will also override any properties set in
the bean’s property file. Assume that ejb.sessionTimeout is set to 900 (seconds) in
the ejipt.properties file and that the bean2.properties file contains the following
entry:

ejb.sessionTimeout=1800

To set a timeout value of 300 at runtime for the EJB engine, include the
-Dbean2Home.ejb.sessionTimeout=300 parameter on the command line when the
EJB engine is started (assuming that bean2 is deployed with bean2Home as its home
name):

> cd JRUN_HOME
> java -Dbean2Home.ejb.sessionTimeout=300 -classpath

lib/ejipt.jar allaire.ejipt.Ejipt

The resulting property lists would look like this:

Looper

bean1

container1
properties

bean2

container2
properties

server properties

bean3

bean4

ejb.isReentrant false

ejipt.properties

ejb.isReentrant true

Chapter 24: Properties 259
The bean2 properties will be included in the server.properties file and will be
copied to the bean2.properties file. As a result, all beans will have an
ejb.sessionTimeout value of 900 with the exception of ‘bean2’, which will have an
ejb.sessionTimeout value of 300.

Summary
Using the above mechanism, all deployed beans have read-only access to all system
properties, ejipt.properties, command line properties and deploy.properties.
They also have access to their container’s default.properties and read-write access
to their own bean properties. Access to lower level properties is always subject to
property overriding at a higher level.

bean5

bean1

container1
properties

bean2

container2
properties

server properties

bean3

bean4

ejb.sessionTimeout 900bean2Home.ejb.sessionTimeout 300

ejb.sessionTimeout 300

ejipt.properties

260 Developing Applications with JRun

C H A P T E R 2 5
Chapter 25 Resource Management
This chapter describes the various server resources available to developers.

Contents

• Overview ... 262

• Local Home Objects ... 262

• Instance Manager... 263

• Database Connection Management... 263

• Local Cache / Store .. 264

• Loaded Users and Roles... 264

• AutoCall Methods... 265

262 Developing Applications with JRun
Overview
JRun provides a set of APIs for interacting with the EJB engine and managing its
resources. The classes in the allaire.ejipt package that provide these APIs are as

follows:

All resource management facilities in the EJB engine rely on the currently executing
thread to locate the contextual information necessary to execute methods.

All threads executing in the EJB engine are associated with a thread context. Accessing
resources through the thread context provides convenience, security and safety. The
EJB engine, not the bean developer, is responsible for pulling together objects. The EJB
engine can also perform monitoring, thus preventing the possible abuse of resources.

Local Home Objects
When calling one bean from another where the beans are local (both running on the
same server) there a two alternatives. The first alternative is to have the calling bean
create a local JNDI context. The second option is for the calling bean to call
ResourceManager.getLocalEJBHome(name) where the name is the same as the one
specified in the target bean’s properties file.

Both methods will then return a reference to the home object. Since calling
getLocalEJBHome() is a simple hash lookup, it will generally be faster than using JNDI.

For additional information, refer to the ResourceManager API documentation,
provided with the JRun JavaDocs files.

API Usage

Class Name API Usage

ResourceManager Manages database connections, references
to local home objects and administers
automatic calls.

InstanceManager Retrieves information about the state of a
deployed bean’s instance from the
associated context, and provides hints to the
server regarding instance state changes.

StoreManager Provides a non-JDBC persistence and
caching mechanism.

UserManager Manages users and roles in the server,
provides sign-in functionality for users.

Chapter 25: Resource Management 263
Instance Manager

Context / Bean Instance Pools

A bean context is used to retrieve information about the state of a deployed bean’s
instance. A context is created at the time a bean instance is created, remains with a
bean for the life of the bean instance, and cannot be used by any other bean instance.
The context holds information about the bean instance, such as if the instance’s state
has changed.

The number of available contexts can be managed by setting the ejipt.maxContexts,
ejipt.maxFreeContexts and ejipt.minFreeContexts properties. For more
information on setting these properties, refer to the EjiptProperties API
documentation, provided with the JRun JavaDocs files.

The InstanceManager class provides the API for interacting with the context. Often it is
very useful to be able to determine if a bean’s instance is the first instance created by
the server. The InstanceManager.isFirst() method returns true when the current
instance is the first instance of that bean. It provides an opportunity to do initialization
of a bean and is usually called from the setEntityContext() or setSessionContext()
methods.

The InstanceManager.isLast() method returns true when the current instance is
the last instance of the bean. It allows for cleanup prior to the bean’s removal and is
usually called from the unsetEntityContext() method.

Instance State Changes

The InstanceManager.isDirty() method provides hints to the EJB engine regarding
changes to the state of an instance. Calling setDirty(true) will force the container to
store the instance. Calling setDirty(false) will cause the container to ignore any
state changes and as a result, will not update the instance in the database.

If the dirty flag has not been set, the container will attempt to determine if the
instance should be stored. This is done using a shallow compare. The container
iterates through the fields using the == operator, comparing them to the cached state
to determine if the state has changed. In the situation where ‘deep’ changes have
occurred, the dirty flag should explicitly be set to true in the bean method to force
storing.

For additional information, refer to the InstanceManager API documentation,
provided with the JRun JavaDocs files,

Database Connection Management
Database connections are resources that are pooled and reused. Each data source
defined in the properties file has its own connection pool.

264 Developing Applications with JRun
Connections are assigned to beans that are using bean managed persistence when a
bean instance calls the ResourceManager.getConnection("sourcename") method. A
java.sql.Connection is then returned. To return the connection to the available pool
call the close() method on the connection. When closing a pooled connection, the
connection itself is not closed, it is simply “cleaned” and returned to the connection
pool ready to be used again.

When using container managed persistence, the container handles all management of
data store connections. For more information, refer to the ResourceManager API
documentation, provided with the JRun JavaDocs files,

JRun also implements prepared statement pools. Use the
ResourceManager.closeStatement() and ResourceManager.releaseStatement()
methods to return a statement to the pool or drop/close a statement from the pool.
Without statement pooling, using prepared statements will degrade performance.

When closing a pooled connection, the connection itself is not closed. It is simply
"cleaned" and returned to the connection pool ready to be used again.

For more information, see “Bean Managed Persistence” on page 275 and “Container
Managed Persistence” on page 281.

Local Cache / Store
The StoreManager provides a mechanism whereby data or entity beans can be
persisted to a store without the use of JDBC. Using the primary key, instances can be
stored and later retrieved. The instance.store file backing the store is created in the
runtime directory.

The ejipt.storeName property can be used to change the name of the store or to
create multiple instances of the store. By setting the ejipt.storeName property in a
bean’s property file you will have a unique data store for that bean.

Custom data stores can be created by implementing the Store interface and then
setting the ejipt.storeClassName property. When implementing custom stores be
sure to implement the getStore() method. The default implementation creates
DefaultStores, therefore this method must be implemented to return the custom
store.

See the JRun Samples Guide for examples that use the instance.store for persistence.
For additional information, refer to the StoreManager class and the Store interface
documentation, provided with the JRun JavaDocs files.

Loaded Users and Roles
UserManager provides the facilities to manage users and roles in the server from
deployed beans. The EJB engine can preload users and roles at startup to ensure
availability when clients begin requesting services.

Chapter 25: Resource Management 265
UserManager assumes that both users and roles are represented by entity beans with
unique primary keys. UserManager adds users as java.security.Principal objects
and roles as java.security.acl.Group objects. UserManager provides methods to
manage the mapping between the primary keys and these java.security.Principal
and java.security.acl.Group objects.

UserManager also provides methods to control login sessions. Once you have a login,
depending on ejipt.threadScope, threads will use the users identity.

See the JRun Samples Guide for examples that use the UserManager class. You can also
learn about users and roles by viewing the deploy.properties files for each sample.
For additional information, refer to the UserManager API documentation, provided
with the JRun JavaDocs files,

AutoCall Methods
The EJB engine allows the scheduling of method calls on EJB objects. This is managed
through the ResourceManager.createAutoCaller() and
ResourceManager.removeAutoCaller() methods.

To create an AutoCaller, call the createAutoCaller() method with the object, the
method, any parameters and the interval (in milliseconds). The method then returns a
unique id for the AutoCaller. The server then calls the specified method at the
specified intervals until the AutoCaller is removed or the server is stopped.

To remove the AutoCaller, call the ResourceManager.removeAutoCaller() method
with the id. AutoCallers are not persisted during server shutdowns.

See the JRun Samples Guide for examples that use the AutoCaller. For additional
information, see the ResourceManager API documentation, provided with the JRun
JavaDocs files.

266 Developing Applications with JRun

C H A P T E R 2 6
Chapter 26 Developing Beans
This chapter describes the process for developing entity and session beans.

Contents

• Overview ... 268

• Writing the Bean’s Remote Interface... 268

• Writing the Bean’s Home Interface ... 269

• Writing the Bean’s Class Implementation .. 269

• Versioning ... 273

• Summary... 274

268 Developing Applications with JRun
Overview
JRun provides full support for both entity and session beans, thereby providing the
ability to develop and deploy robust solutions to business needs.

JRun makes no requirements on the IDE used for developing beans. You can use any
IDE that you choose, provided it supports the Java 2 platform.

The developer is responsible for providing the bean’s class implementation, remote
interface, and home interface. An EJB requires all three elements, which typically use
the following naming convention:

• Remote interface: Beanname (for example, Balance).

• Home interface: BeannameHome (for example, BalanceHome).

• Class implementation: BeannameBean (for example, BalanceBean).

The following sections provide guidelines and illustrations for developing both entity
and session beans.

Writing the Bean’s Remote Interface
The developer is responsible for providing the bean’s remote interface, which extends
javax.ejb.EJBObject. The methods defined in this interface are the only business
methods that can be called by the client. Therefore each method defined in the remote
interface will have a matching method in the bean’s class implementation. The
arguments and return values must be valid RMI data types.

The following sample illustrates the requirements for the remote interfaces:

package ejbeans;
import java.rmi.*;
import javax.ejb.*;
public
interface Balance
extends EJBObject
{

/* All methods here must have matching methods in BalanceBean.java */
void save(int value) throws RemoteException;
void spend(int value) throws RemoteException;

}

Any exceptions defined in the throws clause must match any exceptions defined in the
bean class implementation and must include RemoteException.

Note The actual implementation of this interface (the remote object) is
generated by the Deploy tool.

Chapter 26: Developing Beans 269
Writing the Bean’s Home Interface
The developer is also responsible for providing the bean’s home interface, which
extends javax.ejb.EJBHome. The methods defined in this interface are used by the
client to establish a reference to a remote object.

The home interface must define one create method for session beans and zero or
more create methods for entity beans. For each create method there must be a
matching ejbCreate method with the same arguments in the bean’s class
implementation. Any arguments must be valid RMI data types. The return value must
be the bean’s remote interface type for entity beans and void for session beans.

At least one finder method is required for entity beans. However, finder methods are
not valid for session beans. Finder method arguments must be valid RMI data types
and the return value must be the bean’s remote interface type, either individually or in
a collection or enumeration.

The following sample interface illustrates the requirements for the entity home
interfaces:

package ejbeans;
import java.rmi.*;
import javax.ejb.*;
public
interface BalanceHome
extends EJBHome
{

/* All methods here must have matching methods in BalanceBean.java */
Balance create(int accountId)

throws CreateException, RemoteException;
Balance findByPrimaryKey(Integer key)

throws FinderException, RemoteException;
}

The exceptions defined in the throws clause must match the exceptions defined in the
bean class and must include RemoteException. In the case of create methods,
exceptions must also include CreateException.

The actual implementation of the home interface is generated automatically by the
Deploy tool.

Writing the Bean’s Class Implementation
The requirements for entity beans are different enough from session beans that this
section discusses each type separately. For the sake of completeness, each section
contains redundant discussions.

Entity Beans

Entity beans represent objects that persist through a server shutdown. The data
representing an instance of an entity bean can be stored in the JRun instance.store

270 Developing Applications with JRun
or in a JDBC data store in various rows in various tables. These tables may also span
multiple databases.

The general requirements for an entity bean are that:

• It must implement javax.ejb.EntityBean.

• It must be public.

• It cannot be abstract.

In addition, there are specific methods with defined signatures that must be
implemented.

The following import statements should always be included in your entity bean class
implementation:

import java.rmi.*;
import javax.ejb.*;
import allaire.ejipt.*;

The following statement illustrates the requirement that the class be public and that
the class implement the EntityBean interface.

public class BalanceBean
implements EntityBean

An entity bean instance must store its associated context so that it has access to the
server environment. However, this field should not be persisted.

protected EntityContext _context;

You must define a setEntityContext method. It is called by the container after the
bean instance is created to set the associated entity context.

public void setEntityContext(final EntityContext context)
throws RemoteException
{

_context = context;
}

You must also define an unsetEntityContext method. It clears the associated entity
context and is called by the container before the bean instance is removed.

public void unsetEntityContext()
throws RemoteException

{
_context = null;

}

An ejbCreate method is required only if the entity bean’s home interface contains a
create method. The method must be public, must use the same arguments as the
home interface’s create method, and must return the primary key type.

public Integer ejbCreate(final int accountId)
throws CreateException, RemoteException
{

return new Integer(accountId);
}

Chapter 26: Developing Beans 271
The ejbPostCreate method is required only if the entity bean’s home interface has a
create method. The method must be public, must match the arguments of an
ejbCreate method, and must have a return type of void. In the illustration below, the
instance either exists and is loaded from the JRun instance.store or is created in the
instance.store. For more information, see “Bean Managed Persistence” on page 275

public void ejbPostCreate(final int accountId)
throws CreateException, RemoteException
{

try
{
if (StoreManager.isStored((Serializable)_context.

getPrimaryKey()))
{

StoreManager.loadInstance();
}
else
{

StoreManager.storeInstance();
}
}
catch (IOException io)
{
throw new EJBException(“create failed”);
}

}

The entity bean implementation must also include a findByPrimaryKey() method.
The method must be public and must return the primary key type.

public Integer ejbFindByPrimaryKey(final Integer key)
throws FinderException, RemoteException
{

//do any checks here
return key;

}

An entity bean must also implement the following required methods from the
EntityBean interface:

• ejbRemove is used to do any necessary cleanup prior to the container removing
the bean instance.

• ejbActivate is called by the container when the bean instance is assigned
(activated) to an object and gives the bean instance an opportunity to acquire
additional resources that it may need when it is in the ready state. Since
ejbLoad has not yet been called, no business logic can occur in this method.

• ejbPassivate is called by the container when the instance is about to be
returned to the pool and gives the bean instance the opportunity to release any
resources that should not be held while the bean is in the instance pool.

• ejbLoad is called by the container and instructs the instance to synchronize
state by loading the instance’s state from the underlying database. In the
following illustration the JRun instance.store is used:

272 Developing Applications with JRun
public void ejbLoad()
throws RemoteException
{
 try
 {
 StoreManager.loadInstance();
 }
 catch (IOException io)
 {
 throw new EJBException(“load failed”);
 }
}

• ejbStore is called by the container and instructs the instance to synchronize
state by storing its state to the underlying database. In the following illustration
the JRun instance.store is used:

public void ejbStore()
throws RemoteException
{
 try
 {
 StoreManager.storeInstance();
 }
 catch (IOException io)
 {
 throw new EJBException(“store failed”);
 }
}

For any methods defined in the bean’s remote interface, there must be a matching
method with the same signature in the bean implementation. Generally these
methods implement business logic. The following example illustrates the
implementation of the save method:

public void save(final int value)
throws RemoteException
{

_value += value;
}

Session Beans

Session beans generally represent conversation state rather than business objects.
While session beans can read and write to a database, the bean instances themselves
are not persisted after a server shutdown. Session beans also require additional
resources such as time-out management, which are not required for entity beans.

All session beans are required to implement the javax.ejb.SessionBean interface.

The following imports should always be included:

import java.rmi.*;
import javax.ejb.*;
import allaire.ejipt.*;

Chapter 26: Developing Beans 273
The following statement illustrates the requirements that the class be public and that it
implement the SessionBean interface.

public
class LoginSessionBean
implements SessionBean

The bean instance should store its associated context so that it has access to the server
environment:

protected SessionContext _context;

You must define a setSessionContext method. It sets the associated session context
and it is called by the container after the bean instance is created.

public void setSessionContext(final SessionContext context)
throws RemoteException
{

_context = context;
}

The ejbCreate method is required only if the home interface has a create method.
The method must be public and must return void. For stateless session beans the
ejbCreate() method cannot take arguments.

A session bean must also implement the following required methods from the
SessionBean interface:

• ejbRemove is called by the container just prior to removing the bean. In this
illustration the method notifies the UserManager that the user is logging out
before the session bean is removed.

public void ejbRemove()
throws RemoteException
{
 UserManager.logout(UserManager.getPrincipal(_name));
}

• ejbActivate is called by the container when the bean instance is assigned to
an object.

• ejbPassivate is called by the container when the instance is about to be
returned to the pool.

Versioning
The EJB engine supports standard Java versioning of serializable objects. Objects that
require versioning must use the Serializable.serialVersionUID. Otherwise objects
persisted using earlier versions of an object may not be deserializable with later
versions. For more information, see the JDK documentation on Serialization.

274 Developing Applications with JRun
Summary
Once you have developed your beans you are ready for deployment and testing. For
more information, see “Deploying Enterprise JavaBeans” on page 351.

C H A P T E R 2 7
Chapter 27 Bean Managed Persistence
This chapter describes the bean managed persistence support provided by the EJB
engine.

Contents

• Overview ... 276

• Data Source Properties .. 276

• Bean Methods... 276

• JRun instance.store .. 279

276 Developing Applications with JRun
Overview
Bean managed persistence (BMP) provides the developer with full control over
persisting data. Using bean managed persistence, database statements are hard coded
into the bean implementation. Therefore any changes to the database schema will
likely result in changes to the bean itself.

The developer is still able to take advantage of the connection pooling provided by the
EJB engine and is encouraged to do so. The following discussion assumes that the
developer is using the EJB engine for connection management.

Data Source Properties
The deploy.properties file contains the properties for defining data sources. The
following snippet illustrates the definition of source1, a data source.

ejipt.jdbcSources=source1
source1.ejipt.sourceURL=jdbc:odbc:sample
source1.ejipt.sourceUser=xyz
source1.ejipt.sourcePassword=pass

The ejipt.jdbcSource property names the source. The ejipt.sourceURL is a
standard Java URL definition. In this case the standard JDBC/ODBC driver is used to
connect to a database named sample. The ejipt.sourceUser and
ejipt.sourcePassword properties contain the user name and password for the
database.

When using third-party JDBC drivers be sure to set the
ejipt.sourceDriverClassName and ejipt.sourceURL properties.

source1.ejipt.sourceDriverClassName=oracle.jdbc.driver.OracleDriver
source1.ejipt.sourceURL=jdbc:oracle:thin:@host:1521:orcl

The exact property values are specific to a particular driver. Be sure to read the
documentation provided with your driver.

For a complete description of properties, see “Properties” on page 253.

Bean Methods
With bean managed persistence, the container calls certain EntityBean interface
methods at various persistence function points (such as create, load, and store). The
class implementation must contain persistence logic in the following methods:

• ejbCreate and ejbPostCreate

• ejbLoad

• ejbStore

• ejbRemove

Chapter 27: Bean Managed Persistence 277
The following sections describe in detail the associated code within a class
implementation for implementing bean managed persistence.

Create and Post Create

The ejbCreate method is used to determine if an object 1) can and 2) should be
created. The ejbPostCreate method does the actual create if necessary. As a result,
the ejbCreate method generally is used to do any necessary validation of the instance
fields. The argument list for ejbCreate and ejbPostCreate methods must be the
same.

The following ejbPostCreate implementation first gets a connection to the database,
then attempts to determine if the object represented by that primary key exists in the
database. If it exists, the bean instance’s state is set. If the select did not return a result,
the object is created and then inserted into the database.

public void ejbPostCreate(final int accountId)
 throws CreateException, RemoteException
{

try
{

final Statement statement = ResourceManager.
getConnection(“source1”).createStatement();

final ResultSet results = statement.executeQuery
("SELECT value FROM account WHERE id = " +
 _context.getPrimaryKey());

if (!results.next())
{

statement.executeUpdate
("INSERT INTO account (id, value) VALUES ("
 +_context.getPrimaryKey() +"," +

_value +")");
}
else
{

_value = results.getInt(1);
results.close();

}
}
catch (final Exception exception)
{

exception.printStackTrace();
throw new RemoteException("create failed");

}
}

Load

The ejbLoad method is used to retrieve an entity object from a data store and load the
results. The following ejbLoad implementation first gets a connection to the database,
then attempts to retrieve the instance.

278 Developing Applications with JRun
public void ejbLoad()
 throws RemoteException
{

try
{

final Statement statement = ResourceManager.
getConnection("source1").createStatement();
final ResultSet results = statement.executeQuery

("SELECT value FROM account WHERE id = "
 + _context.getPrimaryKey());

results.next();
_value = results.getInt(1);
results.close();

}
catch (final Exception exception)
{

exception.printStackTrace();
throw new RemoteException("load failed");

}
}

Store

The ejbStore method persists an entity object’s state. The following ejbStore
implementation first gets a connection to the database, then attempts to update the
database with the state of the object.

public void ejbStore()
 throws RemoteException
{

try
{

final Statement statement = ResourceManager.
 getConnection("source1").createStatement();
statement.executeUpdate(“UPDATE account SET value = "

+ _value + " WHERE id = " +
_context.getPrimaryKey());

}
catch (final Exception exception)
{

exception.printStackTrace();
throw new RemoteException("store failed");

}
}

When the EJB engine checks for state changes, it does only shallow identity compares
(that is, ==) on the members of bean instances. Therefore if only an element of a
member array is changed but not the array itself, the EJB engine will not detect the
state change (see “Instance State Changes” on page 263). This optimization is
necessary to avoid performance degradation with lengthy iterations through possibly
deep data structures.

Chapter 27: Bean Managed Persistence 279
To skip checking for state changes and force a store, use the
InstanceManager.setDirty(true) method call. To instruct the EJB engine to ignore
changes call setDirty(false).

Remove

The ejbRemove method is called to delete an entity object from the data store. The
following ejbRemove implementation first gets a connection to the database, then
attempts to delete the object in the database.

public void ejbRemove()
 throws RemoteException
{

try
{

final Statement statement = ResourceManager.
 getConnection("source1").createStatement();
statement.executeUpdate("DELETE account WHERE id = "

 + _context.getPrimaryKey());
}
catch (final Exception exception)
{

exception.printStackTrace();
throw new RemoteException("remove failed");

}
}

JRun instance.store
JRun provides instance.store, a file based, transacted, extensible persistence
mechanism. This mechanism can be used to persist entity beans when a full relational
database is not desirable or not available.

The Store interface represents a non-JDBC persistent store that deployed beans can
use to store instance states. This interface allows for customizing of the persistence
mechanisms used by the server.

The instance.store can be used as delivered or extended using the Store interface. It
is possible to customize the instance.store mechanism in JRun by either subclassing
the DefaultStore implementation or by providing a different implementation for the
Store interface.

All objects stored in instance.store are associated with a key. In the default
implementation, the key is the associated object’s primary key. Instance states can be
updated, retrieved or deleted from the store using the primary key.

For more information about the default implementation of Store, refer to the
DefaultStore API documentation, provided with the JRun JavaDocs files and to
“Resource Management” on page 261.

280 Developing Applications with JRun
Properties

JRun provides two properties for managing instance.store:

• ejipt.storeName is the property for specifying a unique name for an
instance.store. JRun allows each bean to have its own store. Specifying this
property in a bean’s property file will result in a store in the runtime directory
with that name containing any persisted instances of that bean. You can also
specify this property in the default.properties file to set the object store
name for the container (used by all beans deployed in the container). If not
specified, the property defaults to instance.store.

• ejipt.storeClassName is the property for specifying a custom class that
implements the Store interface. The custom class would be used to customize
the Store behavior. If not specified, the ejipt.storeClassName property
defaults to allaire.ejipt.DefaultStore.

Samples

The simplicity of the instance.store mechanism is demonstrated in the JRun
Samples Guide, samples 1 and 4. Sample 3 also contains directions on converting it to
use the instance.store rather than a database.

C H A P T E R 2 8
Chapter 28 Container Managed Persistence
This chapter describes the container managed persistence support provided by
JRun.

Contents

• Overview ... 282

• Properties.. 282

• Multiple SQL Statements ... 284

• Bean Methods... 285

• Stored Procedure Calls... 289

• Developer Responsibilities With CMP.. 289

• CMP Summary ... 289

282 Developing Applications with JRun
Overview
Container Managed Persistence (CMP) with JRun is achieved through the use of
properties. Since the container takes on full responsibility for persisting a bean’s state,
the complexity of bean implementations can be significantly reduced when using
CMP.

The tedious and error prone work of ‘how to persist’ is provided by the container while
the developer retains complete control over ‘what to persist’ and ‘where to persist’.

CMP support is provided for both the instance.store and for JDBC data stores.
Mapping information and actual SQL statements for these actions are provided by the
developer in the bean’s properties.

Both JDBC prepared statements and stored procedure calls are fully supported. Just as
with other expensive resources, the EJB engine pools and manages JDBC statements
automatically for maximum efficiency.

Developers have fine control over the sequence of executed SQL statements. Bean
instance fields are used to store both parameters and the results of executed SQL
statements.

As an added benefit to this approach to CMP, a bean’s state can be comprised of data
that is actually stored in multiple tables, possibly in multiple databases. In the case
where multiple databases are involved, the developer may specify a series of SQL
statements to be executed during persistence actions.

Properties
There are several properties that can be set by the bean developer when using CMP.
ejb.containerManagedFields is the only property required for CMP. The existence of
the ejb.containerManagedFields in a bean’s property file triggers the use of CMP.
Without this property present, no CMP will occur.

Only fields listed in the ejb.containerManagedFields property will be managed by
the container. It is the only property to be set when using CMP with the
instance.store. All primary key fields must be included in the list. The following is an
example where the id is the primary key field and value is the data field to be stored:

ejb.containerManagedFields= id,value

Chapter 28: Container Managed Persistence 283
In the case of CMP using a relational database, additional properties are used to
provide the SQL statements necessary for accomplishing persistence. For each type of
action, the EJB engine defines a set of properties.

CMP Properties

Action Properties

create ejipt.createSQL

ejipt.createSQL.source

ejipt.createSQL.params

ejipt.createSQL.paramTypes

ejipt.createSQL.fields

postCreate ejipt.postCreateSQL

ejipt.postCreateSQL.source

ejipt.postCreateSQL.params

ejipt.postCreateSQL.paramTypes

ejipt.postCreateSQL.fields

load ejipt.loadSQL

ejipt.loadSQL.source

ejipt.loadSQL.params

ejipt.loadSQL.paramTypes

ejipt.loadSQL.fields

store ejipt.storeSQL

ejipt.storeSQL.source

ejipt.storeSQL.params

ejipt.storeSQL.paramTypes

ejipt.storeSQL.fields

remove ejipt.removeSQL

ejipt.removeSQL.source

ejipt.removeSQL.params

ejipt.removeSQL.paramTypes

ejipt.removeSQL.fields.

284 Developing Applications with JRun
The behavior of each property is the same for all persistence actions and is defined as

follows:

Multiple SQL Statements
A bean may require several SQL statements for a given persistence action. For example
you may have multiple SQL statements that are used to create a bean. In that case,
each additional SQL property set has an index associated with it.

findname ejipt.findnameSQL

ejipt.findnameSQL.source

ejipt.findnameSQL.params

ejipt.findnameSQL.paramTypes

ejipt.findnameSQL.fields

CMP Property Behavior

Property Description

ejipt.actionSQL Provides the SQL statement or stored
procedure call to interact with the database.

ejipt.actionSQL.source Indicates the JDBC source. This must match
an ejipt.jdbcSources entry in the
deploy.properties file.

ejipt.actionSQL.params Lists the field names associated with any
parameters, in order of appearance, in the
SQL statement. Each parameter can be
qualified as “IN” (default), “OUT” or “INOUT”.

ejipt.actionSQL.paramTypes Indicates the JDBC types, in order of
appearance, for each field listed in the
params property.

ejipt.actionSQL.fields Lists the destination field names, in order of
appearance, for the elements returned in the
resultSet.

CMP Properties (Continued)

Action Properties

Chapter 28: Container Managed Persistence 285
In a situation where a persistence action requires three SQL statements, the resulting
property file may contain three sets of SQL properties as follows:

...
ejipt.createSQL=...
ejipt.createSQL.source=...
ejipt.createSQL.params=...
ejipt.createSQL.fields=....
ejipt.createSQL2=...
ejipt.createSQL2.source=...
ejipt.createSQL2.params=...
ejipt.createSQL2.fields=....
.
.
.
ejipt.createSQLn=...
ejipt.createSQLn.source=...
ejipt.createSQLn.params=...
ejipt.createSQLn.fields=....
...

Notice the index associated with the additional sets of SQL properties. The SQL
statements will be executed in ascending order of the index in the property name.
There is no limit to the number of SQL statements allowed.

Bean Methods
The following sections detail the behind-the-scenes process for each bean method
associated with persistence actions. The various required and optional properties are
also described.

Create and Post Create

When creating a bean instance, the container calls the bean’s ejbCreate method to
determine if the primary key data and parameters are valid. The ejbCreate method
must initialize all parameters used by the create SQL statements. The return value for
ejbCreate should be null.

The container determines the validity of the create arguments by executing the
createSQL statements. The createSQL must return a result set that contains the
primary key fields. If no results are returned, a CreateException will be thrown to
signify invalid create arguments.

Otherwise the container will create a primary key based on the returned fields. The
container then determines if an object with that primary key exists in the server.

If an object with that primary key does not already exist in the server, the
postCreateSQL statements are executed to possibly insert the object’s representation
into the database. The postCreateSQL must return the bean instance’s state for the
newly created object. The bean’s ejbPostCreate will then be called by the container to
finalize the create.

286 Developing Applications with JRun
The series of steps the container performs are as follows:

1. Call the bean instance’s ejbCreate().

2. Execute the createSQL statements.

3. If the primary key is returned, determine if it exists in the server.

4. If the primary key exists in the server and the ejipt.isCreateSilent has not been
set to true, then a javax.ejb.DuplicateKeyException will be thrown.

5. Only if the primary key does not exist in the server, execute the postCreateSQL
and then call the bean instance’s ejbPostCreate method.

The value of ejipt.createSQL generally contains a ‘SELECT’ statement that
determines the validity of the object and returns the primary key, if necessary.

ejipt.createSQL= SELECT value FROM account WHERE id = ?
ejipt.createSQL.source= source1
ejipt.createSQL.params= id
ejipt.createSQL.paramTypes= INTEGER
ejipt.createSQL.fields= value

The ejipt.postCreateSQL generally contains an ‘INSERT’ statement.

ejipt.postCreateSQL= INSERT INTO account (id, value) VALUES
(id_in,value_out)
ejipt.postCreateSQL.source= source1
ejipt.postCreateSQL.params= id, value
ejipt.postCreateSQL.paramTypes= INTEGER, INTEGER
Load

When synchronizing the state of the bean instance from the database, the container
first executes the loadSQL statements, thus loading the results into the specified fields.
The container then calls the ejbLoad method on the bean so that the bean can do any
further initialization based on the values retrieved from the database.

The value of ejipt.loadSQL generally contains a ‘SELECT’ statement that returns a
result set containing the bean instance’s data.

ejipt.loadSQL= SELECT value FROM account WHERE id = ?
ejipt.loadSQL.source= source1
ejipt.loadSQL.params= id
ejipt.loadSQL.paramTypes= INTEGER
ejipt.loadSQL.fields= value

Store

When synchronizing the state of the bean instance to the database, the container first
calls the ejbStore method on the bean instance. This allows the bean to prepare the
parameter fields in the instance prior to the data being stored in the database.

The value of ejipt.storeSQL generally contains an ‘UPDATE’ statement that
synchronizes the database with the current state of the bean.

ejipt.storeSQL= UPDATE account SET value = ? WHERE id = ?
ejipt.storeSQL.source= source1
ejipt.storeSQL.params= value, id

Chapter 28: Container Managed Persistence 287
ejipt.storeSQL.paramTypes= INTEGER, INTEGER

The InstanceManager.isDirty method provides hints to the server regarding
changes to the state of an instance. Calling setDirty(true) will force the container to
store the instance. Calling setDirty(false) will cause the container to ignore any
state changes and as a result, will not update the instance in the database.

If the dirty flag has not been set, the container will attempt to determine if the
instance should be stored. This is done using a shallow compare. The container
iterates through the fields using the == operator, comparing them to the cached state
to determine if the state has changed. In the situation where ‘deep’ changes have
occurred, the dirty flag should explicitly be set to true in the bean method to force
storing.

Remove

When removing an instance, the container calls the bean instance’s ejbRemove
method to allow the instance to do any necessary cleanup before the instance is
removed from the database. In ejbRemove the developer is also responsible for setting
any parameters used by the SQL statement.

The value of ejipt.removeSQL generally contains a ‘DELETE’ statement.

ejipt.removeSQL= DELETE account WHERE id = ?
ejipt.removeSQL.source= source1
ejipt.removeSQL.params= id
ejipt.removeSQL.paramTypes= INTEGER, INTEGER

Finders

Developers can use finder methods with CMP when using a JDBC data source. For
each finder method the developer must provide the finderSQL properties. For
example, let’s assume there is a findBigAccounts method.

The container will first call the bean’s ejbfindBigAccounts method to set any
parameters in the bean instance to be used with the finderSQL statements. The finder
method should return null.

The container then calls each finder SQL statement in order. For each result set
returned, the container will:

1. Set the fields in the bean instance.

2. Create a new primary key (pk).

3. Copy the corresponding fields from the instance into the pk.

4. Add the pk to the list of pks to be returned.

The SQL property may be similar to the following:

ejipt.findBigAccountsSQL = SELECT id FROM sometable WHERE balance >
1000000
ejipt.findBigAccountsSQL.fields=custId

288 Developing Applications with JRun
To find big accounts where the criteria is set in the finder method, the following may
be used:

ejipt.findBigAccountsSQL = SELECT id FROM sometable WHERE balance >?
ejipt.findBigAccountsSQL.params=criteria
ejipt.findBigAccountsSQL.paramTypes=double
ejipt.findBigAccountsSQL.fields=custId

It is crucial to provide in the properties file the mapping from the result columns to
those fields of the bean that are also part of the primary key(pk). Once a collection of
pks is constructed from the results, the EJB engine proceeds to find/create the
associated entity objects (instances of the implementation class generated during
deployment from the remote interfaces).

Depending on whether the finder returns an enumeration or a Java 2 collection, the
EJB engine then creates either an enumeration or a collection out of the list of entity
objects and returns it to the caller.

When using the instance.store, finder methods must be fully implemented in the
bean.

findByPrimaryKey

Entity beans must define all used members defined in the primary key class (pk). In
addition to the pk fields and other instance variables, the bean can also define
additional members that can be used to store temporary data including data that is
used in sql queries.

In the ejbFindByPrimaryKey() method, all the fields that will be used by the sql
statement specified in the ejipt.findByPrimaryKeySQL property must be prepared.
Generally this means taking the members of the passed in pk and simply assigning
them to the bean instance’s appropriate members.

After calling the ejbFindByPrimaryKey method, the EJB engine will execute the
findByPrimaryKeySQL. The EJB engine will first map the parameter arguments and/or
fields listed in the properties to the SQL statement’s parameters. In the SQL statement
or stored procedure there should be a check to determine whether the database still
contains the object associated with the passed in keys. If it does, one row should be
returned that contains the results that, after storing in the listed fields, will enable the
EJB engine to construct a valid instance of the pk class. If the passed-in pk members
are no longer associated with an object in the database, the SQL should not return any
rows.

The EJB engine will then take the just created pk instance and will look in its object
table for an appropriate ejb object. If one is found, the EJB engine returns it as the
result of the entity object’s findByPrimaryKey() method. If the EJB engine does not
find one, it will create a new ejb object and return it. If there was no pk instance
created, due to no rows returned from the SQL, the method will throw a finder
exception.

It is important and required that the pk class defines appropriate equals and hashCode
methods. Without these, the object table lookup will not work correctly.

Chapter 28: Container Managed Persistence 289
Stored Procedure Calls
SQL statements enclosed in braces { } will be treated as stored procedure calls. When
using stored procedures you may need to indicate whether parameters are ‘IN’, ‘OUT’
or ‘INOUT’. If not specified, the type defaults to ‘IN’. For example, where you have a
stored procedure getBalance that takes a customer id and date and returns a balance,
the property may look like this:

ejipt.storeSQL={?=getBalance(?,?)}

Your parameter definitions would be as follows:

ejipt.storeSQL.params=balance:OUT,custId,date

Values can be returned from a stored procedure without actually returning a result set
as illustrated in the following snippet:

ejipt.postCreateSQL= { call create_balance(?, ?) }
ejipt.postCreateSQL.source= source1
ejipt.postCreateSQL.params= id, value:OUT
ejipt.postCreateSQL.paramTypes= INTEGER, INTEGER

Developer Responsibilities With CMP
When developing beans using container managed persistence, there are a few
guidelines to remember. The ejbCreate, ejbStore, ejbRemove and finder methods
must provide any necessary parameter initialization, while ejbLoad and
ejbPostCreate should provide any necessary post-processing. In addition, ejbCreate
and any finder methods should return null. When using the instance.store, finder
methods must be fully implemented in the bean.

All container managed fields must appear in the ejb.containerManagedFields list
and must be serializable when using instance.store.

The container must have access to the bean instance’s primary key type. Therefore the
following rules apply for primary keys of beans using CMP:

• The primary key class must be public.

• The primary key class must have a public default constructor.

• The primary key class must implement an equals method.

• The used fields in the primary key must be member variables of the bean
instance.

• The used fields in the primary key must be included in the
ejb.containerManagedFields list.

CMP Summary
JRun’s property driven CMP provides a flexible and efficient mechanism, while leaving
the bean developer in complete control of the SQL statement definitions. SQL

290 Developing Applications with JRun
statements can be easily modified without requiring any recompilation. Multiple SQL
statements and stored procedure calls provide a robust environment that is truly
scalable.

C H A P T E R 2 9
Chapter 29 Java Messaging
This chapter explains how to use the Java Message Service with JRun.

Contents

• Overview ... 292

• Message Components.. 294

• Message Types .. 296

292 Developing Applications with JRun
Overview
JRun provides seamless integration of full Java Message Service (JMS) support within
the EJB engine. The following discussion describes using the JMS services provided
with JRun. It is assumed that the reader has knowledge and understanding of JMS.

For complete information on JMS, refer to the JMS specification available from
www.javasoft.com.

JRun fully supports both point-to-point (queue-based) and publish/subscribe (topic-
based) synchronous and asynchronous messaging. Messages can be specified as
persistent, thus ensuring that messages are not lost in a server shutdown.

Durable subscriptions are available with topic-based messaging. This ensures that a
client will receive all messages that are generated, including any messages that are
generated while the subscriber may be inactive.

This document uses the term producer to describe the client that sends a message. It
uses the term consumer to describe the client that receives a message. Note that
consumers and producers are both referred to as clients.

To produce or consume messages, a client first establishes a Connection to the server
and then calls the Connection to create a Session. The client then communicates with
the server, producing or consuming messages using the previously established
Session object. Point-to-point messaging and publish/subscribe each use customized
descendants of the Connection and Session objects. For more information on these
objects, see “Message Types” on page 296.

Note With point-to-point messaging, producers are referred to as senders and
consumers as receivers. With publish/subscribe, producers are referred
to as publishers and consumers as subscribers.

JRun messaging architecture

JRun implements JMS through the following objects:

• The Connector object manages communication between the JMS Connection
object and the JRun MessageQueue object.

• The MessageQueue object holds messages. JRun implements this object
through an entity bean.

• The MultiCaster object distributes messages to consumers. JRun implements
this object through an entity bean.

JRun forwards client messages from the Connection object, through the Connector on
the server, to the specified MessageQueue. Once messages have been added to the
MessageQueue, the Multicaster distributes messages to consumers according to the
Message Type and any properties that may have been set. Any requested
acknowledgements are then returned to the producer. JRun uses standard UDP
multicasting for remote JMS connections.

Chapter 29: Java Messaging 293
When connections are local, the Multicaster distributes the Messages via the
Connectors. Beans can be set up as Consumers (listeners) by including the
javax.jms.MessageListener interface in the implements clause of the bean’s remote
interface and implementing the javax.jms.MessageListener interface and the
onMessage method in the bean’s implementation.

Messaging support is fully transacted and is based on the EJB engine’s scalable entity
architecture supporting local entity beans. This approach allows the use of BMP and
CMP for message persistence and logging.

JRun uses the MessageQueueBean entity bean to implement queues (point-to-point)
and the TopicDispatcherBean entity bean to implement topics (publish/subscribe).

client 1

Connector
(session bean)

Connector
(session bean)

Multicaster MessageQueue
(entity bean)

server

client 2

Consumer

C

Producer

P

Session

S

S

Connection

C

C

P

P

S

S

S

C

Remote Connections

Connector
(session bean)

Connector
(session bean)

Multicaster MessageQueue
(entity bean)

server

C

C

P

P

S

S

S

C

Local Bean

C

C

P

P

S

S

S

C

Local Bean

Local Connections

294 Developing Applications with JRun
This architecture allows you to customize messaging functionality by overriding the
default bean implementation.

Message Components
A message consists of the following distinct parts:

• Header — Information used by both the client and the server to identify and
route messages.

• Properties — Additional header properties. Properties can be application-
specific, standard or server-specific.

• Body — Message body. The message body may be one of several defined types.

Message header fields

JRun provides support for JMS message header fields, sending these fields to all JMS
message recipients. The following table outlines the JMS message header fields
supported by JRun:

JMS Message Header Fields

Field Contents Set by

JMSDestination Contains a Destination object for the message
destination.

JRun

JMSDeliveryMode Contains the delivery mode. Valid values are
DeliveryMode.PERSISTENT and
DeliveryMode.NON_PERSISTENT.

JRun

JMSMessageID Contains a unique message ID. JRun

JMSTimestamp Contains the time that the message was sent to JRun. JRun

JMSCorrelationID Contains an application-specific string that links a
response with its associated request.

JRun

JMSReplyTo Contains a Destination object to which a reply
should be sent. A reply is not required, however, the
presence of a Destination object in this field implies
that a reply is expected.

JRun

JMSRedelivered Contains a boolean indicating whether the message
is being redelivered. If a consumer receives a message
with JMSRedelivered set to true, it is likely that the
message was delivered previously but the consumer
did not acknowledge receipt.

Client?

Chapter 29: Java Messaging 295
Access header fields using methods from the Message interface, which is extended by
content-specific message interfaces, such as TextInterface and MapInterface.

Message properties

JRun does not support the optional JMSX-prefixed message properties defined in the
JMS specification. However, you can use Message object methods to get and set
properties. For example, you might use the following code snippet to set a property
before sending a message:

...
try {
 // Set a property for user ID, assumes thisUser String variable.
 message.setStringProperty("UserID", thisUser);
 if(message != null) {
 message.setText(text);
 // Send to the queue. The message will last for 5 minutes.
 sender.send(_message, delivery, priority, 5 * 60 * 1000);
 }
 else {
 out.println("<H1>Message was null</H1>");
 }
}
...

And you might use the following code snippet to retrieve a property upon receiving a
message:

final TextMessage message = (TextMessage)(_receiver.receiveNoWait());
// Get all properties
Enumeration e = message.getPropertyNames();
if(!e.hasMoreElements()) {
 out.println("<h1>no properties</H1>");
}
while(e.hasMoreElements()) {
 String prop = (String)e.nextElement();
 out.print("<p> " + prop);
 // Assumes that all properties are Strings.

JMSType Contains a String specifying a message type. Client?

JMSExpiration Contains a long specifying the message’s expiration
time. JRun sets this time by adding the time-to-live
value specified by the client and the GMT at the time
of the send.

JRun

JMSPriority Contains the message’s priority. Priorities are
between 0 (lowest) and 9 (highest).

JRun

JMS Message Header Fields (Continued)

Field Contents Set by

296 Developing Applications with JRun
 out.println(": " + message.getStringProperty(prop));
}

Message body types

The JMS 1.0.2 specification describes a set of message body forms, each of which is
defined by an interface that extends Message.

The following table outlines EJB message body interfaces:

JRun implements these interfaces through similarly named classes in
allaire.ejipt._jms.

Message Types
The EJB engine supports both the point-to-point and publish/subscribe messaging
mechanisms.

Point-to-Point

Point-to-point messaging is a queue-based mechanism. Messages are addressed to a
specific queue. Senders add messages to the queue and receivers extract messages
from the queue.

EJB Message Body Types

Interface Description Comment

StreamMessage Contains a stream of Java primitive
values.

Populate and read this type
sequentially.

MapMessage Contains a set of name-value pairs.
The names must be String objects
and the values must be Java
primitive types.

Access these either
sequentially by enumerator
or randomly by name.

TextMessage Contains a single String object. Use this for text messages
or messages containing
data in XML format.

ObjectMessage Contains a Serializable Java
object.

You can optionally use one
of the JDK 1.2 collection
classes.

BytesMessage Contains a stream of uninterpreted
bytes.

You don’t typically use this
body type.

Chapter 29: Java Messaging 297
When implementing a point-to-point messaging solution, you code the following:

• Sender

• Receiver

Coding the sender

A sender adds messages to the queue using the following objects:

• javax.naming.Context

• javax.jms.QueueConnectionFactory

• javax.jms.QueueConnection

• javax.jms.QueueSession

• javax.jms.QueueSender

• One of the descendents of the javax.jms.Message object, as specified in
“Message body types” on page 296.

The sender class does not extend from any of the javax.jms classes. It can explicitly
extend another class or implicitly extend java.lang.Object.

To code a sender:

1. Import the following packages:

import java.rmi.*;
import java.util.*;
import javax.ejb.*;
import javax.jms.*;
import javax.naming.*;

2. Declare object-scoped variables for the objects used by JMS, as follows:

private Context _context = null;
private QueueConnection _connection = null;
private QueueSession _session = null;
private TextMessage _message = null; // Example uses TextMessage.
private QueueSender _sender = null;

3. Establish system security using RMISecurityManager:

static {
 System.setSecurityManager(new RMISecurityManager());
 }

4. Before sending messages, create and populate the JMS variables:

try {
 final Properties properties = new Properties();
 properties.setProperty(Context.INITIAL_CONTEXT_FACTORY,
 "allaire.ejipt.ContextFactory");
 properties.setProperty(Context.PROVIDER_URL,
 "ejipt://" + _host + ":2323");
 _context = new InitialContext(properties);

 final QueueConnectionFactory factory =

298 Developing Applications with JRun
 (QueueConnectionFactory)_context.lookup
 (QueueConnectionFactory.class.getName());
 // Use factory to create QueueConnection
 _connection = factory.createQueueConnection();
 // Use QueueConnection to create QueueSession
 _session = _connection.createQueueSession(false,
 Session.AUTO_ACKNOWLEDGE);
 // Use QueueSession to create QueueSender
 _sender = _session.createSender(_session.createQueue(_queue));
 _sender.setDisableMessageID(false);
 // Create TextMessage object
 _message = _session.createTextMessage();
 }
 catch(NamingException e) {
 System.out.println("Naming Exception: " + e.getMessage());
 }
 catch(JMSException e) {
 System.out.println("JMS Exception: " + e.getMessage());
 }

5. Send the message (this servlet example retrieves the message from a form field):

...
String text = new String("Blank Message");

String[] attrArray = req.getParameterValues("thisMessage");
// We know that the calling form only has one value for thisMessage.
if(attrArray != null) {
 text = attrArray[0];
}
try {
 _message.setText(text);
 // Send to the queue. The message will last for 5 minutes.
 _sender.send(_message, delivery, priority, 5 * 60 * 1000);
 }
catch(JMSException e) {
 System.out.println("JMS Exception: " + e.getMessage());
 }
...

6. Close JMS objects when you are finished:

try {
 _sender.close();
 _session.close();
 _connection.close();
 _context.close();
}
catch(NamingException e) {
 System.out.println("Naming exception in destroy: " +
 e.getMessage());
}
catch(JMSException e) {
 System.out.println("JMS Exception: " + e.getMessage());
}

Chapter 29: Java Messaging 299
The following servlet example contains the complete code for sending a point-to-point
message:

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
import java.rmi.*;
import java.util.*;
import javax.ejb.*;
import javax.jms.*;
import javax.naming.*;

public class MySender extends HttpServlet {
 // Set up queue attributes.

 // Use defaults unless passed through init parameters
 private final String _mode = new String("manual");

 private final String _name = new String("defaultUser");
 private final String _queue = new String("defaultQueue");

 private final String _host = new String("rnielsen");

 // Set up objects for use by JMS.
 private Context _context = null;

 private QueueConnection _connection = null;
 private QueueSession _session = null;
 private TextMessage _message = null;
 private QueueSender _sender = null;

 static {
 System.setSecurityManager(new RMISecurityManager());
 }

 public void init(ServletConfig config) throws ServletException {
 super.init(config);

 // Get set up with JNDI
 try {
 final Properties properties = new Properties();

 properties.setProperty(Context.INITIAL_CONTEXT_FACTORY,
 "allaire.ejipt.ContextFactory");
 properties.setProperty(Context.PROVIDER_URL,
 "ejipt://" + _host + ":2323");
 _context = new InitialContext(properties);

 final QueueConnectionFactory factory =
 (QueueConnectionFactory)_context.lookup
 (QueueConnectionFactory.class.getName());
 // Use factory to create QueueConnection

 _connection = factory.createQueueConnection();
 // Use QueueConnection to create QueueSession

 _session = _connection.createQueueSession(false,
 Session.AUTO_ACKNOWLEDGE);
 // Uses QueueSession to create QueueSender
 _sender = _session.createSender(_session.createQueue(_queue));

300 Developing Applications with JRun
 _sender.setDisableMessageID(false);
 // Create TextMessage object
 _message = _session.createTextMessage();

 }
 catch(NamingException e) {
 System.out.println("Naming Exception: " + e.getMessage());
 }
 catch(JMSException e) {
 System.out.println("JMS Exception: " + e.getMessage());
 }
}

// Displays a form that accepts a message to send.
public void doGet(HttpServletRequest req,
 HttpServletResponse res) throws IOException, ServletException {

res.setContentType("text/html");
PrintWriter out = res.getWriter();

out.println("<html><head><title>Message Sender</title>");
 out.println("</head><body>");

out.println("<h1>Message Sender</h1>");
out.println("<p>Type your message and press Submit</p><hr>");
out.println("<form action=\"/servlet/MySender\" method=\"post\">");

 // Textarea to contain message
 out.println("<p>Message:<p>");
 out.println("<TextArea name=\"thisMessage\"></textarea>");
 out.println("<p>");
 out.println("<input type=\"Submit\" value=\"Submit Message\">");

out.println("</form>");
out.println("</body></html>");

 }

// Reads the form and sends the message.
public void doPost(HttpServletRequest req,
 HttpServletResponse res) throws IOException, ServletException {
 // Reads the form.
 // Here is where all the message sending happens.
 // See the init method for setup stuff.
 res.setContentType("text/html");
 PrintWriter out = res.getWriter();

 String text = new String("Blank Message");

 String[] attrArray = req.getParameterValues("thisMessage");
 // We know that the calling form only has one value for thisMessage.

if(attrArray != null) {
 text = attrArray[0];
}

 try {
 _message.setText(text);
 // Send to the queue. The message will last for 5 minutes.
 _sender.send(_message, delivery, priority, 5 * 60 * 1000);
 }

Chapter 29: Java Messaging 301
catch(JMSException e) {
 System.out.println("JMS Exception: " + e.getMessage());

 }

// Display send confirmation.
out.println("<html><head><title>Message Sent</title></head><body>");
out.println("<h1>Message Sent</h1>");
out.println("<p>The following message was sent</p><hr>");
out.println("<p>" + text);
out.println("<form action=\"/servlet/MySender\" method=\"get\">");

 out.println("<p>");
 out.println("<input type=\"Submit\" value=\"Return\">");

out.println("</form>");
out.println("</body></html>");

 }

public String getServletInfo() {
 return "Message Sender";
 }

public void destroy() {
 // if (!= null) checks omitted for brevity.
 try {
 _sender.close();
 _session.close();
 _connection.close();
 _context.close();
 }
 catch(NamingException e) {
 System.out.println("Naming exception in destroy: " +
 e.getMessage());
 }
 catch(JMSException e) {

 System.out.println("JMS Exception: " + e.getMessage());
 }
 }
}

Coding the receiver

A receiver retrieves messages from the queue using the following objects:

• javax.naming.Context

• javax.jms.QueueConnectionFactory

• javax.jms.QueueConnection

• javax.jms.QueueSession

• javax.jms.QueueReceiver

• One of the descendents of the javax.jms.Message object, as specified in
“Message body types” on page 296.

302 Developing Applications with JRun
The receiver class must implement the MessageListener interface. It does not extend
any of the javax.jms classes, although it can explicitly extend another class or
implicitly extend java.lang.Object.

To code a receiver:

1. Import the following packages:

import java.rmi.*;
import java.util.*;
import javax.ejb.*;
import javax.jms.*;
import javax.naming.*;

2. Declare object-scoped variables for the objects used by JMS, as follows:

private Context _context = null;
private QueueConnection _connection = null;
private QueueSession _session = null;
private TextMessage _message = null; // Example uses TextMessage.
private QueueReceiver _receiver = null;

3. Establish system security using RMISecurityManager:

static {
 System.setSecurityManager(new RMISecurityManager());
 }

4. Before receiving messages, create and populate the JMS variables:

try {
 final Properties properties = new Properties();
 properties.setProperty(Context.INITIAL_CONTEXT_FACTORY,
 "allaire.ejipt.ContextFactory");
 properties.setProperty(Context.PROVIDER_URL,
 "ejipt://" + _host + ":2323");
 _context = new InitialContext(properties);

 final QueueConnectionFactory factory =
 (QueueConnectionFactory)_context.lookup
 (QueueConnectionFactory.class.getName());
 // Use factory to create QueueConnection
 _connection = factory.createQueueConnection();
 // Use QueueConnection to create QueueSession
 _session = _connection.createQueueSession(false,
 Session.AUTO_ACKNOWLEDGE);
 // Use QueueSession to create QueueReceiver
 _receiver = _session.createReceiver(_session.createQueue(_queue));
 // Create TextMessage object.
 _message = _session.createTextMessage();
}
catch(NamingException e) {
 System.out.println("Naming Exception: " + e.getMessage());
}
catch(JMSException e) {
 System.out.println("JMS Exception: " + e.getMessage());
}

Chapter 29: Java Messaging 303
5. Retrieve the message from the queue:

...
// Retrieve the message from the queue.
try {
 // Start the connection.
 _connection.start();
 // Get the message object. Be sure to cast it to
 // the appropriate Message subclass (TextMessage in this example)
 final TextMessage message =
 (TextMessage)(_receiver.receiveNoWait());
 // Get the message text.
 String text = new String(message.getText());
 if(text.equals("") | text.equals(null)) {
 text = "No Message";
 }
 out.println(text);
 _connection.stop();
 out.println("</body></html>");
}
catch(JMSException e) {
 System.out.println("JMS Exception: " + e.getMessage());
}
...

6. Close JMS objects when you are finished:

try {
 _receiver.close();
 _session.close();
 _connection.close();
 _context.close();
}
catch(NamingException e) {
 System.out.println("Naming exception in destroy: " +
 e.getMessage());
}
catch(JMSException e) {
 System.out.println("JMS Exception: " + e.getMessage());
}

The following servlet example contains the complete code for receiving a point-to-
point message:

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
import java.rmi.*;
import java.util.*;
import javax.ejb.*;
import javax.jms.*;
import javax.naming.*;

public class MyReceiver extends HttpServlet
 implements MessageListener {
 // Set up queue attributes.

304 Developing Applications with JRun
 // Use defaults unless passed through init parameters
 private final String _mode = new String("manual");

 private final String _name = new String("defaultUser");
 private final String _queue = new String("defaultQueue");

 private final String _host = new String("rnielsen");

 // Set up objects for use by JMS.
 private Context _context = null;

 private QueueConnection _connection = null;
 private QueueSession _session = null;
 private TextMessage _message = null;
 private QueueReceiver _receiver = null;
 static {
 System.setSecurityManager(new RMISecurityManager());
 }

 public void init(ServletConfig config) throws ServletException {
 super.init(config);

 // Get set up with JNDI
 try {
 final Properties properties = new Properties();

 properties.setProperty(Context.INITIAL_CONTEXT_FACTORY,
 "allaire.ejipt.ContextFactory");
 properties.setProperty(Context.PROVIDER_URL,
 "ejipt://" + _host + ":2323");
 _context = new InitialContext(properties);

 final QueueConnectionFactory factory =
 (QueueConnectionFactory)_context.lookup
 (QueueConnectionFactory.class.getName());
 // Use factory to create QueueConnection
 _connection = factory.createQueueConnection();
 // Use QueueConnection to create QueueSession
 _session = _connection.createQueueSession(false,
 Session.AUTO_ACKNOWLEDGE);
 // Use QueueSession to create QueueReceiver
 _receiver = _session.createReceiver
 (_session.createQueue(_queue));
 // Create TextMessage object.
 _message = _session.createTextMessage();
 }

 catch(NamingException e) {
 System.out.println("Naming Exception: " + e.getMessage());
 }
 catch(JMSException e) {
 System.out.println("JMS Exception: " + e.getMessage());
 }
}

// First time only - Displays a Receive Message button.
// Displays a form that receives messages.
public void doGet(HttpServletRequest req,
 HttpServletResponse res) throws IOException, ServletException {

Chapter 29: Java Messaging 305
res.setContentType("text/html");
PrintWriter out = res.getWriter();

out.println("<html><head><title>Message Receiver</title>");
 out.println("</head><body>");

out.println("<h1>Message Receiver</h1>");
out.println("<p>Press Receive Message to retrieve a message:");

 out.println("<p><hr>");
out.println("<form action=\"/servlet/MyReceiver\" method=\"post\">");

 out.println("<p>");
 out.println("<input type=\"Submit\" value=\"Receive Message\">");

out.println("</form>");
out.println("</body></html>");

}

public void doPost(HttpServletRequest req,
 HttpServletResponse res) throws IOException, ServletException {

res.setContentType("text/html");
PrintWriter out = res.getWriter();

out.println("<html><head><title>Message Receiver</title>");
 out.println("</head><body>");

out.println("<h1>Message Receiver</h1>");
out.println("<p>Press Receive Message to retrieve another message:");

 out.println("<p><hr>");
out.println("<form action=\"/servlet/MyReceiver\" method=\"post\">");

 // Retrieve the message from the queue.
try {
 // Start the connection.
 _connection.start();

 // Get the message object.
 final TextMessage message =

 (TextMessage)(_receiver.receiveNoWait());
 // Get the message text.

 String text = new String(message.getText());
 if(text.equals("") | text.equals(null)) {
 text = "No Message";
 }
 out.println(text);

 _connection.stop();
 out.println("</body></html>");

 }
catch(JMSException e) {
System.out.println("JMS Exception: " + e.getMessage());

 }

 // Finish up the form/html
 out.println("<p>");
 out.println("<input type=\"Submit\" value=\"Receive Message\">");
 out.println("</form>");
 out.println("</body></html>");
}

 // You must define onMessage but it doesn’t

306 Developing Applications with JRun
 // need to be implemented.
public void onMessage(final Message message)

 { }

public String getServletInfo() {
 return "Message Receiver";
 }

public void destroy() {
 try {
 _receiver.close();
 _session.close();
 _connection.close();
 _context.close();
 }
 catch(NamingException e) {
 System.out.println("Naming exception in destroy: " +
 e.getMessage());
 }
 catch(JMSException e) {

 System.out.println("JMS Exception: " + e.getMessage());
 }
 }
}

Publish-Subscribe

Publish-subscribe is a broadcast mechanism in which messages are published to
topics and distributed automatically to the subscribers of the topic. Topics can be
hierarchical where subscribers to the top level receive all messages but subscribers of a
subtopic receive only the subtopic messages.

Coding the publisher

A publisher adds messages to the topic using the following objects:

• javax.naming.Context

• javax.jms.TopicConnectionFactory

• javax.jms.TopicConnection

• javax.jms.TopicSession

• javax.jms.TopicPublisher

• One of the descendents of the javax.jms.Message object, as specified in
“Message body types” on page 296.

The publisher class does not extend from any of the javax.jms classes. It can explicitly
extend another class or implicitly extend java.lang.Object.

To code a publisher:

1. Import the following packages:

Chapter 29: Java Messaging 307
import java.rmi.*;
import java.util.*;
import javax.ejb.*;
import javax.jms.*;
import javax.naming.*;

2. Declare object-scoped variables for the objects used by JMS, as follows:

private Context _context = null;
private TopicConnection _connection = null;
private TopicSession _session = null;
private TextMessage _message = null;
private TopicPublisher _publisher = null;

3. Establish system security using RMISecurityManager:

static {
 System.setSecurityManager(new RMISecurityManager());
 }

4. Before sending messages, create and populate the JMS variables:

try {
 final Properties properties = new Properties();
 properties.setProperty(Context.INITIAL_CONTEXT_FACTORY,
 "allaire.ejipt.ContextFactory");
 properties.setProperty(Context.PROVIDER_URL,
 "ejipt://" + _host + ":2323");
 _context = new InitialContext(properties);

 final TopicConnectionFactory factory =
 (TopicConnectionFactory)_context.lookup
 (TopicConnectionFactory.class.getName());
 // Use factory to create TopicConnection
 _connection = factory.createTopicConnection();
 // Use TopicConnection to create TopicSession
 _session = _connection.createTopicSession(false,
 Session.AUTO_ACKNOWLEDGE);
 // Uses TopicSession to create TopicPublisher
 _publisher = _session.createPublisher
 (_session.createTopic(_topic));
 _publisher.setDisableMessageID(false);
 // Create TextMessage object
 _message = _session.createTextMessage();
}
catch(NamingException e) {
 System.out.println("Naming Exception: " + e.getMessage());
}
catch(JMSException e) {
 System.out.println("JMS Exception: " + e.getMessage());
}

5. Publish the message (this servlet example retrieves the message from a form field):

...
String text = new String("Blank Message");

String[] attrArray = req.getParameterValues("thisMessage");

308 Developing Applications with JRun
// We know that the calling form only has one value for thisMessage.
if(attrArray != null) {
 text = attrArray[0];
}
try {
 _message.setText(text);
 // Publish to the topic. The message will last for 5 minutes.
 _publisher.publish(_message, delivery, priority, 5 * 60 * 1000);
}
catch(JMSException e) {
 System.out.println("JMS Exception: " + e.getMessage());
 }
...

6. Close JMS objects when you are finished:

try {
 _publisher.close();
 _session.close();
 _connection.close();
 _context.close();
}
catch(NamingException e) {
 System.out.println("Naming exception in destroy: " +
 e.getMessage());
}
catch(JMSException e) {
 System.out.println("JMS Exception: " + e.getMessage());
}

The following servlet example contains the complete code for publishing a topic:

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
import java.rmi.*;
import java.util.*;
import javax.ejb.*;
import javax.jms.*;
import javax.naming.*;

public class MyPublisher extends HttpServlet {
 // Set up queue attributes.
 private String _topic = new String("defaultTopic");

 private String _host = new String("rnielsen");

 // Set up objects for use by JMS.
 private Context _context = null;

 private TopicConnection _connection = null;
 private TopicSession _session = null;
 private TextMessage _message = null;
 private TopicPublisher _publisher = null;

 static {
 System.setSecurityManager(new RMISecurityManager());

Chapter 29: Java Messaging 309
 }

 public void init(ServletConfig config) throws ServletException {
 super.init(config);

 // Get set up with JNDI
 try {
 final Properties properties = new Properties();

 properties.setProperty(Context.INITIAL_CONTEXT_FACTORY,
 "allaire.ejipt.ContextFactory");
 properties.setProperty(Context.PROVIDER_URL,
 "ejipt://" + _host + ":2323");
 _context = new InitialContext(properties);

 final TopicConnectionFactory factory =
 (TopicConnectionFactory)_context.lookup
 (TopicConnectionFactory.class.getName());
 // Use factory to create TopicConnection

 _connection = factory.createTopicConnection();
 // Use TopicConnection to create TopicSession

 _session = _connection.createTopicSession(false,
 Session.AUTO_ACKNOWLEDGE);
 // Uses TopicSession to create TopicPublisher
 _publisher =
 _session.createPublisher(_session.createTopic(_topic));

 _publisher.setDisableMessageID(false);
 // Create TextMessage object
 _message = _session.createTextMessage();

 }
 catch(NamingException e) {
 System.out.println("Naming Exception: " + e.getMessage());
 }
 catch(JMSException e) {
 System.out.println("JMS Exception: " + e.getMessage());
 }
}

// Displays a form that accepts a message to publish.
public void doGet(HttpServletRequest req,
 HttpServletResponse res) throws IOException, ServletException {

res.setContentType("text/html");
PrintWriter out = res.getWriter();

out.println("<html><head><title>Message Publisherr</title>");
 out.println("</head><body>");

out.println("<h1>Message Publisher</h1>");
out.println("<p>Type your message and press Submit</p><hr>");
out.println("<form");

 out.println(" action=\"/servlet/MyPublisher\" method=\"post\">");

 // Textarea to contain message
 out.println("<p>Message:<p>");
 out.println("<TextArea name=\"thisMessage\"></textarea>");
 out.println("<p>");
 out.println("<input type=\"Submit\" value=\"Submit Message\">");

310 Developing Applications with JRun
out.println("</form>");
out.println("</body></html>");

 }

// Reads the form and sends the message.
public void doPost(HttpServletRequest req,
 HttpServletResponse res) throws IOException, ServletException {
 // Reads the form.
 // Here is where all the message publishing happens.
 res.setContentType("text/html");
 PrintWriter out = res.getWriter();

 int priority = Message.DEFAULT_PRIORITY;
 int delivery = Message.DEFAULT_DELIVERY_MODE;
 String text = new String("Blank Message");

 String[] attrArray = req.getParameterValues("thisMessage");
 // We know that the calling form only has one value for thisMessage.

if(attrArray != null) {
 text = attrArray[0];
}

 try {
 _message.setText(text);
 // Publish to the topic. The message will last for 5 minutes.
 _publisher.publish(_message, delivery, priority, 5 * 60 * 1000);
 }

catch(JMSException e) {
 System.out.println("JMS Exception: " + e.getMessage());

 }

// Display send confirmation.
out.println("<html><head><title>Message Published</title>");

 out.println("</head><body>");
out.println("<h1>Message Published</h1>");
out.println("<p>The following message was published</p><hr>");
out.println("<p>" + text);
out.println("<form action=\"/servlet/MyPublisher\" method=\"get\">");

 out.println("<p>");
 out.println("<input type=\"Submit\" value=\"Return\">");

out.println("</form>");
out.println("</body></html>");

 }

public String getServletInfo() {
 return "Message Publisher";
 }

public void destroy() {
 // if (!= null) checks omitted for brevity.
 try {
 _publisher.close();
 _session.close();
 _connection.close();

Chapter 29: Java Messaging 311
 _context.close();
 }
 catch(NamingException e) {
 System.out.println("Naming exception in destroy: " +
 e.getMessage());
 }
 catch(JMSException e) {

 System.out.println("JMS Exception: " + e.getMessage());
 }
 }
}

Coding the subscriber

JMS passes topics to a subscriber when they are published to a relevant topic. You
code a subscriber using the following objects:

• javax.naming.Context

• javax.jms.TopicConnectionFactory

• javax.jms.TopicConnection

• javax.jms.TopicSession

• javax.jms.TopicSubscriber

• One of the descendents of the javax.jms.Message object, as specified in
“Message body types” on page 296.

The subscriber class must implement the MessageListener interface and the
onMessage method. JRun calls the onMessage method when a message is published to
a topic to which the subscriber class has subscribed.

The subscriber class does not extend any of the javax.jms classes, although it can
explicitly extend another class or implicitly extend java.lang.Object.

Note The subscriber architecture shown in the following sample code uses a
standalone message listener class to capture and store messages. This
class is then instantiated by an owning class (a servlet, in this case),
which accesses messages on demand.

To code a subscriber (listener):

1. Import the following packages:

import java.rmi.*;
import java.util.*;
import javax.ejb.*;
import javax.jms.*;
import javax.naming.*;

2. Create a class declaration that implements the MessageListener interface:

public class MyTopicListener implements MessageListener {
...

3. Declare object-scoped variables for the objects used by JMS, as follows:

312 Developing Applications with JRun
private Context _context = null;
private TopicConnection _connection = null;
private TopicSession _session = null;
private TextMessage _message = null; // Example uses TextMessage.
private TopicSubscriber _subscriber = null;

4. Establish an object to contain messages (this example uses a Vector):

// This is only an example. Your listener can manage messages
// using a wide variety of techniques.
Vector theMessages = new Vector();

5. Establish system security using RMISecurityManager:

static {
 System.setSecurityManager(new RMISecurityManager());
 }

6. Before receiving messages, create and populate the JMS variables:

try {
 final Properties properties = new Properties();
 properties.setProperty(Context.INITIAL_CONTEXT_FACTORY,
 "allaire.ejipt.ContextFactory");
 properties.setProperty(Context.PROVIDER_URL,
 "ejipt://" + _host + ":2323");
 _context = new InitialContext(properties);

 final TopicConnectionFactory factory =
 (TopicConnectionFactory)_context.lookup
 (TopicConnectionFactory.class.getName());
 // Use factory to create TopicConnection
 _connection = factory.createTopicConnection();
 // Use TopicConnection to create TopicSession
 _session = _connection.createTopicSession(false,
 Session.AUTO_ACKNOWLEDGE);
 // Use TopicSession to create TopicSubscriber
 _subscriber = _session.createSubscriber
 (_session.createTopic(_topic));
 // set messageListener
 _subscriber.setMessageListener(this);
 _connection.start();
}
catch(NamingException e) {
 System.out.println("Naming Exception: " + e.getMessage());
}
catch(JMSException e) {
 System.out.println("JMS Exception: " + e.getMessage());
}

7. Code the onMessage method and any associated message management methods:

...
private void setMessage(String thisMessage) {
 // Add message to theMessages Vector.
 theMessages.add(thisMessage);
}

Chapter 29: Java Messaging 313
// Allows external classes to retrieve messages.
public Enumeration getMessages() {
 // Convert Vector to Enumeration.
 Enumeration returnThis = theMessages.elements();
 // Return Enumeration.
 return returnThis;
}

// Mandatory method when implementing the MessageListener
// interface. This method simply passes the passed
// message to the setMessage method, which
// adds it to a Vector.
public void onMessage(final Message message)
{
 String text = null;
 try {
 text = ((TextMessage)message).getText();
 setMessage(text);
 }
 catch(JMSException e) {
 System.out.println("JMSException: " + e.getMessage());
 }
}
...

8. Close JMS objects when you are finished:

...
// This examples closes objects through a method call.
// This allows external classes to manage the message listener.
public void cleanUp() {
 try {
 _connection.stop();
 _subscriber.setMessageListener(null);
 _subscriber.close();
 _session.close();
 _connection.close();
 _context.close();
 }
 catch(NamingException e) {
 System.out.println("Naming exception in destroy: " +
 e.getMessage());
 }
 catch(JMSException e) {
 System.out.println("JMS Exception: " + e.getMessage());
 }
}
...

The following example shows complete code for topic retrieval through a message
listener class and the onMessage method:

import java.rmi.*;
import java.util.*;
import javax.ejb.*;
import javax.jms.*;

314 Developing Applications with JRun
import javax.naming.*;

public class MyTopicListener implements MessageListener {
 // Set up topic attributes.

 // These are set in the Constructor.
 private String _topic;

 private String _host;

 // Set up variable to hold messages
 Vector theMessages = new Vector();

 // Set up objects for use by JMS.
 private Context _context = null;

 private TopicConnection _connection = null;
 private TopicSession _session = null;
 private TopicSubscriber _subscriber = null;

 static {
 System.setSecurityManager(new RMISecurityManager());
 }

// Constructor accepting multiple args
public MyTopicListener(String topic, String host) {
 // Parameter error checking omitted for clarity
 _topic = topic;
 _host = host;
 // Get set up with JNDI
 try {
 final Properties properties = new Properties();

 properties.setProperty(Context.INITIAL_CONTEXT_FACTORY,
 "allaire.ejipt.ContextFactory");
 properties.setProperty(Context.PROVIDER_URL,
 "ejipt://" + _host + ":2323");
 _context = new InitialContext(properties);

 final TopicConnectionFactory factory =
 (TopicConnectionFactory)_context.lookup
 (TopicConnectionFactory.class.getName());
 // Use factory to create TopicConnection

 _connection = factory.createTopicConnection();
 // Use TopicConnection to create TopicSession

 _session = _connection.createTopicSession(false,
 Session.AUTO_ACKNOWLEDGE);
 // Use TopicSession to create TopicSubscriber

 _subscriber = _session.createSubscriber
 (_session.createTopic(_topic));

 // set messageListener
 _subscriber.setMessageListener(this);
 _connection.start();

 }
 catch(NamingException e) {
 System.out.println("Naming Exception: " + e.getMessage());
 }
 catch(JMSException e) {

Chapter 29: Java Messaging 315
 System.out.println("JMS Exception: " + e.getMessage());
 }
}

// Default Constructor. Call multi-arg Constructor passing
 // hard-wired defaults.

public MyTopicListener() {
 this("defaultTopic", "rnielsen");
}

 // Called by onMessage method.
private void setMessage(String thisMessage) {

 // Add message to theMessages Vector.
 theMessages.add(thisMessage);
}

 // Retrieve messages. For use by external classes.
public Enumeration getMessages() {

 // Convert Vector to Enumeration.
 Enumeration returnThis = theMessages.elements();

 // Return Enumeration.
 return returnThis;
}

// Called by JRun when a subscribed-to topic
 // gets a new message. This implementation simply
 // adds the messages to a Vector.
 public void onMessage(final Message message)
 {

 String text = null;
 try {
 text = ((TextMessage)message).getText();

 setMessage(text);
 }
 catch(JMSException e) {
 System.out.println("JMSException: " + e.getMessage());
 }
 }

 // Clean up objects. Called by external classes.
public void cleanUp() {
 try {
 _connection.stop();

 _subscriber.setMessageListener(null);
 _subscriber.close();
 _session.close();
 _connection.close();
 _context.close();
 }
 catch(NamingException e) {
 System.out.println("Naming exception in destroy: " +
 e.getMessage());
 }
 catch(JMSException e) {

316 Developing Applications with JRun
 System.out.println("JMS Exception: " + e.getMessage());
 }

}
}

The follow servlet example uses the message listener class to access messages from a
publish/subscribe topic:

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
import java.util.*;

public class MySubscriber extends HttpServlet {

 // This servlet communicates with the message listener.
 // This Constructor listens to the default topic,
 // you can also pass in topic and host.
 MyTopicListener thisTopicListener = new MyTopicListener();

// First time only
// Displays a form that receives messages.
public void doGet(HttpServletRequest req,
 HttpServletResponse res) throws IOException, ServletException {

res.setContentType("text/html");
PrintWriter out = res.getWriter();

out.println("<html><head><title>Message Subscriber</title>");
 out.println("</head><body>");

out.println("<h1>Message Subscriber</h1>");
out.println("<p>Press Get Latest Topics to retrieve messages:");

 out.println("</p><hr>");
out.println

 ("<form action=\"/servlet/MySubscriber\" method=\"post\">");
 out.println("<p>");
 out.println("<input type=\"Submit\" value=\"Get Latest Topics\">");

out.println("</form>");
out.println("</body></html>");

 }

// This executes all but the first time.
public void doPost(HttpServletRequest req,
 HttpServletResponse res) throws IOException, ServletException {

res.setContentType("text/html");
PrintWriter out = res.getWriter();

out.println("<html><head><title>Message Subscriber</title>");
 out.println("</head><body>");

out.println("<h1>Message Subscriber</h1>");
 // Retrieve the messages from the topic.

out.println("<p>");
Enumeration enum = thisTopicListener.getMessages();

 if(!enum.hasMoreElements()) {
 out.println("No messages to retrieve");
}

Chapter 29: Java Messaging 317
while (enum.hasMoreElements()) {
 String name = (String)enum.nextElement();
 out.println("<hr>" + name);
}
out.println

 ("<p>Press Receive Get Latest Topics to retrieve messages:<hr>");
out.println

 ("<form action=\"/servlet/MySubscriber\" method=\"post\">");

 // Finish up the form/html
 out.println("<p>");
 out.println("<input type=\"Submit\" value=\"Get Latest Topics\">");
 out.println("</form>");
 out.println("</body></html>");
 }

public String getServletInfo() {
 return "Message Subscriber";
 }

public void destroy() {
 // Clean up in myTopicListener
 thisTopicListener.cleanUp();
 // Null out myTopicListener
 thisTopicListener = null;
 }
}

318 Developing Applications with JRun

C H A P T E R 3 0
Chapter 30 Using Servlets to Access EJBs
This chapter explains how to enable servlet access to EJBs.

Contents

• Overview ... 320

• Accessing EJBs through JRun .. 320

320 Developing Applications with JRun
Overview
Servlets are an excellent way to communicate with clients when your clients are
outside a firewall. They provide all the benefits of EJB along with a thin-client HTML
interface.

Note The beans you want to use must have been coded, as described in
Chapter 26, and deployed, as described in Chapter 34.

Accessing EJBs through JRun
When you start JRun, the default configuration includes the EJB engine running
within the JRun server. To access an EJB from within a servlet, your code must
perform the following:

• Obtain a reference to the home object implementation (accessed through
JNDI).

• Obtain a reference to the remote object implementation by calling either a
create or find method on the home object reference.

• Call one or more of the EJB’s methods.

The following discussions show sample code for a login servlet and a servlet that
performs EJB access.

Login servlet

The following servlet displays a login form, logs the user in, authenticates (via the
InitalContext), and redirects to the BalanceServlet:

import java.io.*;
import java.util.*;
import javax.naming.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class LoginServlet extends HttpServlet {

// First time (Method=GET) just display the form.
public void doGet(final HttpServletRequest request, final
HttpServletResponse response)
 throws IOException, ServletException {

 response.setContentType("text/html");
 final PrintWriter out = response.getWriter();

 out.println("<html>");
 out.println("<body>");
 out.println("<head>");
 out.println("<title>Servlet Sample</title>");

Chapter 30: Using Servlets to Access EJBs 321
 out.println("</head>");
 out.println("<body>");
 out.println("<blockquote>");
 out.println("<form name=\"Login\" method=\"POST\">");
 out.println("<table border=\"0\" cellpadding=\"20\"
cellspacing=\"0\" width=\"300\">");
 out.println("<tr bgcolor=\"#dddddd\" valign=\"top\">");
 out.println("<td align=\"right\" width=\"300\">");
 out.println("
");
 out.println("Server " +
request.getServerName() + ":" +

 request.getServerPort() + "</p><p>");
 out.println("User <input type=\"text\" name=\"User\"
size=\"10\">
");
 out.println("Password <input type=\"password\" name=\"Password\"
size=\"10\">

</td></tr>");
 out.println("<tr bgcolor=\"#dddddd\" valign=\"top\">");
 out.println("<td align=\"center\" width=\"300\">

");
 out.println("<input type=\"submit\" name=\"Login\"
value=\"Login\"></td>");
 out.println("</tr>");
 out.println("</table>");
 out.println("</form>");
 out.println("</blockquote>");
 out.println("</body>");
 out.println("</html>");

 out.flush();
}

// Second time (Method=POST), process the form and redirect
// to BalanceServlet.
public void doPost(final HttpServletRequest request, final
HttpServletResponse response)
 throws IOException, ServletException {

 try {
 final Properties properties = new Properties();
 // Specify the ContextFactory called by the InitialContext method.
 properties.setProperty(Context.INITIAL_CONTEXT_FACTORY,
 "allaire.ejipt.ContextFactory");
 // Set user and password (authenticated when you create
 // InitialContext(properties). Note that you enable
 // authentication by including allowedIdentities properties
 // in the bean properties file (or deployment descriptor).
 properties.setProperty(Context.SECURITY_PRINCIPAL,
 request.getParameter("User"));
 properties.setProperty(Context.SECURITY_CREDENTIALS,
 request.getParameter("Password"));
 final Context context = new InitialContext(properties);

 // Create an HttpSession object.
 final HttpSession session = request.getSession(true);
 // Add the Context object to the HttpSession for use in

322 Developing Applications with JRun
 // later servlets.
 session.setAttribute("context", context);

 // Invoke BalanceServlet (assumes that you have defined a
 // servlet mapping for /balance in the JMC)
 response.sendRedirect("http://" + request.getServerName() + ":" +
 request.getServerPort() + request.getContextPath() + "/balance");
 }
 catch (AuthenticationException authentication) {
 response.sendError(HttpServletResponse.SC_FORBIDDEN,
 "Authentication failed");
 }
 catch (Exception exception) {
 throw new ServletException();
 }
 }
}

EJB access servlet

The following servlet example, which is similar to sample 9a in the JRun Samples
Guide, demonstrates EJB access through a servlet:

import java.io.*;
import java.rmi.*;
import java.util.*;
import javax.ejb.*;
import javax.naming.*;
import javax.servlet.*;
import javax.servlet.http.*;
import allaire.ejipt.*;
import ejbeans.*;

public class BalanceServlet extends HttpServlet {
 private static int _count;

 private String _server;
 private String _user;

 private String _accountnumber;
 private String _amount;
 private String _repeat;

 private Integer _balance = null;
 private String _status;

// This method gets called when HTTP METHOD=GET
public void doGet(final HttpServletRequest request,
 final HttpServletResponse response)
 throws IOException, ServletException {

 // Get Context object, which is passed through the HttpSession
 // object and was established by LoginServlet. In this example,

Chapter 30: Using Servlets to Access EJBs 323
 // the Context object contains the userID and password of
 // the authenticated user.
 final HttpSession session = request.getSession(true);
 final Context context = (Context)session.getAttribute("context");

 // If the context attribute is null, space out object variables
 // and return to login form.
 if (context == null) {
 _amount = "";
 _repeat = "";

 _accountnumber = "";
 _balance = null;

 // Redirect to LoginServlet (assumes that you have defined a

 // servlet mapping for /login in the JMC).
 response.sendRedirect("http://" + request.getServerName() +

 ":" + request.getServerPort() +
 request.getContextPath() + "/login");

 }
 // If context attribute is not null, save the current user in
 // the _user object variable and display the empty form.
 else {
 _server = request.getServerName() + ":" + request.getServerPort();
 try {
 // Retrieve context properties through a Hashtable. This

 // was established by the calling servlet and keys include:
 // * Context.SECURITY_PRINCIPAL (user)
 // * Context.SECURITY_CREDENTIALS (password)
 final Hashtable environment = context.getEnvironment();

 // Retrieve the user from the properties.
 // This will be used for display.

 _user = (String)environment.get(Context.SECURITY_PRINCIPAL);
 }
 catch (final Exception exception) {
 throw new ServletException();
 }

 _status = "Ready";
 response.setContentType("text/html");
 // Call the method that displays the HTML form.
 printForm(response.getWriter());
 }
}

// This method gets called when HTTP METHOD=POST
public void doPost(final HttpServletRequest request,
 final HttpServletResponse response)
 throws IOException, ServletException {

 // Get Context object, which is passed through the HttpSession object
 // and was established by LoginServlet. In this example, the Context
 // object contains the userID and password of the authenticated user.
 final HttpSession session = request.getSession(true);
 final Context context = (Context)session.getAttribute("context");

324 Developing Applications with JRun

 // If the user wants to logout.
 if (request.getParameter("Logout") != null) {
 _amount = "";
 _repeat = "";

 _accountnumber = "";
 _balance = null;

 try {
 final UserSession user =
 (UserSession)context.lookup("allaire.ejipt.UserSession");
 try{
 // Associate the current thread with the UserSession of
 // the current user
 // (only necessary for EJBs that use security).

 user.begin();
 // Release context resources

 context.close();
 }
 finally {
 user.end();
 }
 }
 catch (final Exception exception) {

 System.out.println("Exception: " + exception.getMessage());
 }
 // Release session resources.
 session.invalidate();

 // If logout, redirect to LoginServlet (assumes that you have
 // defined a servlet mapping for /login in the JMC).
 response.sendRedirect("http://" + request.getServerName() + ":" +

 request.getServerPort() +
 request.getContextPath() + "/login");

 }
 // Else the client wants to save or spend.
 else {
 try {
 // These come from form fields.

 _amount = request.getParameter("Amount");
 _repeat = request.getParameter("Repeat");
 _accountnumber = request.getParameter("AccountNumber");

 // In the real world this would be a float or a double.

 final int amount = Integer.parseInt(_amount);
 // Convert String to int.

 final int accountnumber = Integer.parseInt(_accountnumber);
 // Convert String into int.
 int repeat = Integer.parseInt(_repeat);
 // Convert String into boolean
 final boolean save =
 ("Save".equals(request.getParameter("Save")));

 // Associate the current thread with the UserSession of

Chapter 30: Using Servlets to Access EJBs 325
 // the current user
 // (only necessary for EJBs that use security).
 final UserSession user =

(UserSession)context.lookup("allaire.ejipt.UserSession");
 user.begin();
 try {
 // servletEJBTest.BalanceHome is the bean home name

 // defined in the Balance.properties file
 // (or the XML descriptor)
 final BalanceHome home =

 (BalanceHome)context.lookup("servletEJBTest.BalanceHome");

 // Use account number from the form.
 final Balance balance = home.create(accountnumber);

 // Invoke the bean’s save or spend methods <repeat>
 // number of times.

 while (repeat-- > 0) {
 if (save) {
 balance.save(amount);
 }
 else {
 balance.spend(amount);
 }
 }

 // Save and log new balance
 _balance = new Integer(balance.getValue());

 log("Account number: " + _accountnumber +
 " Balance is: " + _balance);

 }
 catch (final ServerException server) {
 if (server.detail instanceof SecurityException) {
 response.sendError(HttpServletResponse.SC_FORBIDDEN,

 server.detail.getMessage());
 }
 else {
 response.sendError(HttpServletResponse.SC_FORBIDDEN,

 server.getMessage());
 }

 return;
 }
 catch (final Exception exception) {
 response.sendError(HttpServletResponse.SC_FORBIDDEN,

 exception.getMessage());

 return;
 }
 finally {
 user.end();
 }

 response.setContentType("text/html");
 // Call the method that displays the HTML form.

326 Developing Applications with JRun
 printForm(response.getWriter());
 }
 catch (final NumberFormatException format) {
 response.sendError(HttpServletResponse.SC_FORBIDDEN,

 "Invalid amount \’"+_amount+"\’ or repeat count \’"
 +_repeat+"\’");
 }
 catch (final Exception exception) {
 response.sendError(HttpServletResponse.SC_FORBIDDEN,

 exception.getMessage());
 exception.printStackTrace();
 }
 }
 }

// Outputs the HTML form. Called by both doGet and doPost.
private void printForm(final PrintWriter out) {
 out.println("<html>");
 out.println("<body>");
 out.println("<head>");
 out.println("<title>Servlet Sample</title>");
 out.println("</head>");
 out.println("<body>");
 out.println("<blockquote>");
 out.println("<form name=\"Balance\" method=\"POST\">");
 out.print("<table border=\"0\" cellpadding=\"10\" ");
 out.println("cellspacing=\"0\" width=\"300\">");
 out.println("<tr bgcolor=\"#dddddd\" valign=\"top\">");
 out.println("<td align=\"left\" width=\"300\">");
 out.println("
");
 out.println("Server " + _server + "

");
 out.println("User " +
 _user + "
</td></tr>");
 // If they have a balance, display it
 if(_balance != null) {
 out.println("<tr bgcolor=\"#dddddd\" valign=\"top\">");
 out.println("<td align=\"left\" width=\"300\">");
 out.println("
");
 out.println("Current balance: "
 + _balance + "

");
 out.println("
</td></tr>");
 }
 // Prompt for account number
 out.println("<tr bgcolor=\"#dddddd\" valign=\"top\">");
 out.println("<td align=\"center\" width=\"300\"><hr size=\"1\">");
 out.println("");
 out.print("Account Number <input type=\"text\" ");

out.println("name=\"AccountNumber\" value=\""
 + _accountnumber + "\" size=\"10\"> ");

 out.println("</td></tr>");
 // Prompt for amount and repeat
 out.println("<tr bgcolor=\"#dddddd\" valign=\"top\">");
 out.println("<td align=\"center\" width=\"300\"><hr size=\"1\">");
 out.println("");

Chapter 30: Using Servlets to Access EJBs 327
 out.println("Amount <input type=\"text\" name=\"Amount\" value=\""
 + _amount + "\" size=\"10\"> ");

 out.println("Repeat <input type=\"text\" name=\"Repeat\" value=\""
 + _repeat + "\" size=\"7\">

");

 // Click save, spend, or logout.
 out.print("<input type=\"submit\" name=\"Save\" ");

out.println("value=\"Save\"> ");
 out.print("<input type=\"submit\" name=\"Spend\" ");

out.println("value=\"Spend\"> ");
 out.println("<input type=\"submit\" name=\"Logout\" ");

out.println("value=\"Logout\"><hr size=\"1\">
");
 out.println("</td></tr>");
 out.println("<tr bgcolor=\"#dddddd\" valign=\"top\">");
 out.println("<td align=\"left\" width=\"300\"><hr size=\"1\">");
 out.println("");
 out.println(_status);
 out.println("
</td></tr>");
 out.println("</table>");
 out.println("</form>");
 out.println("</blockquote>");
 out.println("</body>");
 out.println("</html>");
 out.flush();
 }
}

328 Developing Applications with JRun

C H A P T E R 3 1
Chapter 31 Advanced Techniques
Contents

• Overview ... 330

• Transactions ... 330

• Deadlocks ... 333

• Disabling Security .. 333

• Context Factories ... 333

• Local Beans... 334

• Client Applications... 334

330 Developing Applications with JRun
Overview
This chapter deals with more advanced features of bean development. Therefore the
topics covered in this chapter cover a variety of features and available functionality not
covered elsewhere.

The topics discussed in this chapter will be limited to JRun-specific explanations and
will not attempt to reiterate the EJB specification. It is assumed that the developer has
some familiarity with the topics.

Transactions
The EJB engine has full support for 2-phase commit transaction management based
on the X/Open XA specification. It supports flat transactions; nested (child)
transactions are not allowed.

Both container managed (implicit) and client or bean managed (explicit) transactions
are supported.

Setting Transaction Attributes

There may be situations when a specific method may require certain transaction
behavior while another method in the same class requires different behavior. This can
be accomplished by setting transaction attributes in a bean’s property file. The bean
may have an assigned attribute while specific methods have differing attributes. This is
illustrated in the following sample:

ejb.transactionAttribute=Supports
save.ejb.transactionAttribute=Mandatory
spend.ejb.transactionAttribute=Required

As a result, the save method will have Mandatory while the spend method will have
Required. The order of the entries does not matter, however, an entry with the same
key as a preceding key will overwrite the preceding attribute.

Transaction attributes may also be attached to create, find and remove methods for
entity beans. The names that appear in the remote and home interfaces should be
used when setting the attribute.

For a list of valid attributes, refer to the EjiptProperties API documentation,
provided with the JRun JavaDocs files

Chapter 31: Advanced Techniques 331
Implicit Transaction Management

When using implicit transaction management the container will begin and commit or
rollback transactions on behalf of the bean. To take advantage of implicit transactions,
the transaction attribute for the bean (or method) must be set to one of the following:

• Required

• RequiresNew

• Mandatory

Rollback

When an exception is thrown by a method involved in a transaction, an exception is
also thrown by the server and the transaction is automatically rolled back. In this case
the original exception (thrown by the method) will be thrown to the client. Therefore
all implicit transactions will be rolled back when an exception is thrown.

Bean and Client Transaction Management

Transaction management gives the developer complete control over transactions and
can be managed from the client or, in the case of session beans, from the bean itself.

Client Demarcated Transactions

A client may choose to explicitly begin, and commit or rollback transactions. The
following snippet illustrates client demarcated transactions. Notice the explicit calls to
begin a transaction, and to commit or rollback a transaction.

public void save(final int amount)
{

try
{

final UserTransaction transaction =
(UserTransaction)_context.lookup
("javax.transaction.UserTransaction");

transaction.begin();
try
{

_balance.save(amount);
}
catch (Exception exception)
{

transaction.rollback();
throw exception;

}
transaction.commit();
return;

}
catch (RemoteException remote)

332 Developing Applications with JRun
{
throw new RuntimeException(remote.toString());

}
catch (Exception exception)
{

throw new RuntimeException(exception.toString());
}

}

Also be sure to set the appropriate value for ejb.transactionAttribute for any
methods called within the transaction.

Bean Managed Transactions

Bean managed transactions are only available to session beans; this feature is not
available to entity beans. When using bean managed transactions the transaction
attribute in the bean’s properties file must be set as follows:

spend.ejb.transactionAttribute=BeanManaged

The following snippet illustrates how a method might be structured:

public void spend(final int value)
throws RemoteException

{
if (_value - value < _min)
{

throw new RuntimeException("Min limit reached");
}

if (_balance != null)
{
final UserTransaction transaction =

_context.getUserTransaction();
transaction.begin();
try
{

_balance.spend(value);
}
catch (final RemoteException remote)
{

transaction.rollback();
throw remote;

}
transaction.commit();

}
_value -= value;

}

Rollback

Explicit transactions will not automatically roll back when application exceptions are
thrown. In the case of unchecked exceptions, however, explicit transactions are
marked for rollback and the TransactionRolledbackException is thrown.

Chapter 31: Advanced Techniques 333
Deadlocks
The EJB engine implements an XA-compliant locking mechanism that will lock EJB
objects for transaction and concurrency management during method calls. The
engine also implements an efficient deadlock detection mechanism for deadlocks that
can occur in either transacted or chained calls. When a deadlock is detected, the EJB
engine effectively breaks the deadlock and either rolls back the affected transaction or
(for non-transacted calls) throws allaire.ejipt.DeadlockException.

Disabling Security
To disable EJB security checks, add the ejb.allowedIdentities=all property to the
bean’s properties. If EJB security is not used, always have the property specified to
effectively disable security checks. When using the above property, all methods of the
bean will be accessible by all callers. If the property is prefixed with the name of a
method, only that method will be callable by all.

Context Factories
Support is provided for JNDI Referenceable which allows binding of home objects
into LDAP directories. All home references can be included into any JNDI context
including the those provided by LDAP service providers.

Custom JNDI context can be used by creating a context factory. Once access to an
instance of either the custom context or a possible third party context is established,
references must be bound/rebound to home objects accordingly. Home object
references are retrieved through the usual look-up mechanism from the default EJB
engine context.

When accessing the services of any name/directory server through JNDI, first
instantiate a JNDI context. JNDI provides the InitialContext API to standardize this
context creating process. The type of contexts JNDI creates is controlled by specifying
a service provider specific context factory before calling the InitialContext API.

The EJB engine includes a context factory, which is used to create JNDI contexts. These
contexts are handed out to clients after they have been populated by the EJB engine
using the standard bind mechanism.

Since there are a large number of options that can be used to customize JNDI contexts,
especially those providing access to directory servers (LDAP), the EJB engine does not
try to bind home objects into third party contexts, thus avoiding the need to specify a
proprietary set of properties to control the ever expanding list of possible
customization options.

To create a custom context factory, implement the
java.naming.spi.InitialContextFactory interface in a class that has a single
method: getInitialContext(...). Within this method create an initial context for
the EJB engine and then bind any custom objects into it. Also be sure to set the

334 Developing Applications with JRun
allaire.ejipt.ContextFactory INITIAL_CONTEXT_FACTORY property with the name
of the custom context factory in client code.

The EJB engine relies on the standard context factory mechanism to customize any
third-party JNDI context with home objects exported by JRun. When accessing the
home objects from a third-party context such as a LDAP directory, first create a context
factory. This context factory will then contact both JRun and the third-party directory
server and will bind the home objects using the customization options selected.

SSL

Any SSL package that is Java 2 compliant (that is, it uses the client/server RMI socket
factories), can be integrated with the EJB engine by simply listing the names of the
classes in the home/object socket factory properties.

Local Beans
When a client asks for a JNDI context, references to all available home objects are sent
by the server to the client. All clients will thus have access to all remote and home
interfaces deployed in the server.

However it is possible to deploy a bean in “local only” mode. In this case the home
object is not exported to any clients and will be accessible only by beans co-located in
the server. To specify a bean as local set the following in the bean’s properties file:

ejipt.isLocal=true

Local beans do not consume remote resources. When wrapping entity beans with
session beans be sure to specify the entity bean as local to prevent the exporting of its
interfaces.

Client Applications

Session Scope

The ejipt.sessionScope property is a client-side property that specifies the scope of
a login session. This can be useful when managing the login sessions for a multi-
threaded client. It must be specified when the client is started but before any
connections are made to the server.

The generated stubs will pick up the property setting from the system properties
during class initialization. It can be specified either on the command line or by calling
the System.setProperty method with the property name and value as arguments.
The property must be set in the system properties before any connection is made to
the server and cannot be changed.

Chapter 31: Advanced Techniques 335
It is crucial that the property be specified before any of the stub classes are loaded by
the client. Clients may log in by either creating an instance of the LoginSession bean
or by a JNDI context with proper credentials.

The valid values for sessionScope are:

• thread - Only the thread that acquired the login will have access (default).

• thread_group - When one thread in the group logs in and all the other threads
in the group are considered logged in.

• vm - When one thread logs in and all threads in the VM (process) are considered
logged in.

Client Connection Definition

The server assigns a unique caller id to each call it receives based on the origin of the
call. When the ejipt.sessionScope property is set to vm, all calls originating from the
client VM will be associated with the same caller id, regardless of how many threads
the VM uses to make calls. If the property is set to thread, calls made by different
threads in the VM will be associated with different caller ids. It is not possible to have
calls originating from different VMs be associated with the same caller id.

When secondary initialcontext are instantiated and ejb.sessionScope is set to vm,
be sure to log in with the same user/password as the initial log in. When a secondary
log in call with a different user/password is made to the server, the server will generate
an "Already Logged In" exception.

With every login through JNDI, a new login session object is created with its own
expiration schedule. The EJB engine keeps track of the number of logins for each caller
id and will release the caller id only after the last login has logged out or expired.

Limited Connections

Certain versions of JRun enforce user connection limitations. For example, if JRun is
limited to three EJB connections, it means that the EJB engine will handle calls
associated with at most three different caller ids at a time. Caller ids are not stored,
meaning that the server can handle a set of three calls at one moment and handle
another, totally different set of three calls in the next moment.

The exception to the above is when a call ‘logs in’. At login time, the id is registered in a
table along with a user id. All calls associated with same caller id will be made in the
security context of the logged-in user until the user logs out (or the login session
expires). At logout, the registration is removed and a new, possibly different user can
log in. Of course, an already logged-in call cannot log in again without first logging out.

Depending on the value of the ejipt.sessionScope property, users can be defined as
three different VMs (client processes) on one end of the spectrum and three different
threads in the same VM at the other. Again, this does not mean that you cannot have
100 different client VMs calling, it only means that the EJB engine will accept only
three at any one moment.

336 Developing Applications with JRun
If the clients use security (that is, they log in), then only a maximum of three users can
be logged in at any time. You should expect a delay of a few seconds from when a user
logged out until the next user can log in. A user slot is freed up only after a previously
logged-in user logs out or is expired.

C H A P T E R 3 2
Chapter 32 Using the EJB Engine
Contents

• Overview ... 338

• Class Loading.. 338

• Classpath... 338

• Running the EJB engine in stand-alone mode .. 339

• Using Third-party JDBC Drivers ... 339

• Troubleshooting Your Setup.. 339

338 Developing Applications with JRun
Overview
This chapter includes discussions that help you understand how to use the EJB engine.
It includes information on running the EJB engine in stand-alone mode as well as
troubleshooting tips.

Class Loading
When starting JRun, the ejipt_exports.jar gets copied to the /runtime directory.
The JRun class server will always pick up the ejipt_exports.jar from the /runtime
directory and will serve this jar to any clients that requests it through the RMI dynamic
class loader. The class server is a specialized HTTP server. All the classes (including
stubs) exported from JRun will have their codebase automatically set to the HTTP URL
of the class server.

Since the ejipt_exports.jar is used only by the class server, this .jar file should not
be in the classpath of the client. The only exception is when dynamic class loading is
not used, in this case manual copying of this .jar file to all clients and explicit
inclusion of it into the client’s classpath is necessary.

JRun puts all the stubs into the exports .jar file. This is done so that only one .jar file
is downloaded by the client when using RMI class loading.

In the case where applets are used on the client side RMI class loading is not necessary
and the exports .jar file may be broken up into multiple .jar files. However, be sure
that the classes that are in the default_exports.jar are included in all the resulting
.jar files. If no default beans are used, include only the obfuscated class from the
default_exports.jar into the various export .jar files.

Classpath
Do not set the CLASSPATH environment variable for the server. All of the standard
extension .jar files (ejb.jar, jdbc.jar, jms.jar jndi.jar and jta.jar) should be
installed in the JRUN_HOME/lib/ext directory. JRun automatically loads all bean .jar
files and the generated objects .jar file and does not rely on the contents of the
CLASSPATH.

For clients, include the ejipt_client.jar along with project-specific client .jar files
into the client’s CLASSPATH. The project’s client .jar files must contain all the remote
and home interfaces for the beans deployed along with any additional classes used by
the interfaces.

Chapter 32: Using the EJB Engine 339
Running the EJB engine in stand-alone mode
You can run the EJB engine in a stand-alone mode (meaning no ability to handle Web
applications, JSPs, and servlets). To start the EJB engine in stand-alone mode, enter
the following commands:

cd jruninstalldirectory
java -Djava.security.policy=jrun.policy -classpath lib/ejipt.jar
allaire.ejipt.Ejipt

After you enter this command, the EJB engine starts and displays a command prompt.
You can use the following commands:

• q (quit): Stops the EJB engine.

• l (load): Dynamically loads bean implementations from the /runtime/classes
directory. For more information on dynamic bean loading, see “Using Dynamic
Bean Loading” on page 359.

You can also restart the EJB engine in stand-alone mode. Doing this forces the EJB
engine to start using only files in the /runtime directory, the contents of the /deploy
directory will not be used. To restart the EJB engine in stand-alone mode, enter the
following commands:

cd jruninstalldirectory
java -Djava.security.policy=ejipt.policy -classpath lib/ejipt.jar
allaire.ejipt.Ejipt -restart

Using Third-party JDBC Drivers
If you are using a third-party JDBC driver, it must be installed on the server machine.
Before starting the server you must include the driver’s .jar files in the classpath. If
you are trying to run the EJB samples with the make files, enter the following, being
sure to provide the correct path for the driver:

bash$ export JDBC_DRIVERS=/path/driver_name

Also be sure to set the ejipt.sourceDriverClassName in the deploy.properties file.

Troubleshooting Your Setup
Once you have deployed your beans and started the server you should be able to
connect to the server from your client. If your connection fails, review the following list
to be sure that you have the installation setup correctly.

Permissions

When connecting to the server the client VM must grant permission to connect. The
simplest mechanism for doing this is by specifying

340 Developing Applications with JRun
-Djava.security.policy=sample.policy as a command line argument when
starting the client. See the JRun Samples Guide for example policy files.

Standard Extensions

All non-JRun .jar files (for example, ejb.jar, jdbc.jar, jms.jar, jndi.jar and
jta.jar) must be installed as standard extensions on both the JRun server and clients.
However, if any of the JRun .jar files inadvertently get installed as standard
extensions you will get security exceptions. Be sure that you install only the files from
the JRUN_HOME/lib/ext directory as standard extensions.

Server Classpath

On the server side leave the CLASSPATH empty and use only the ejipt.jar and any
database driver .jar files on the command line classpath.

Client Setup

Copy the latest ejipt_client.jar to your clients. Use only the ejipt_client.jar
along with your application’s client .jar files in the client’s classpath. Note that your
app’s client .jar files must contain your bean’s remote and home interfaces.

No other EJB engine .jar files (ejipt_exports.jar, ejipt_objects.jar and the
default_xxx.jar’s) need to be copied or touched or used implicitly or explicitly in
classpaths. The EJB engine automatically finds them internally and downloads
ejipt_exports.jar (containing the stubs) to the clients at connect time. The only
exception to this rule is when using JDK 1.1 clients. For step-by-step instructions when
using JDK 1.1 clients, see the JDK 1.1 Client Sample in the JRun Samples Guide.

Se c t i o n V
Deploying Applications Section V
Once development and testing is finished, your application is ready for deployment.
This section describes how to deploy Web applications, EJBs, and J2EE applications
(which include both Web applications and EJBs).

Contents

Assembling and Deploying Web Applications 343

Deploying Enterprise JavaBeans 351

Deploying J2EE Applications 361

C H A P T E R 3 3
Chapter 33 Assembling and Deploying Web
Applications
This chapter explains concepts and tasks related to assembling and deploying Web
applications.

Contents

• Overview of Application Assembly and Deployment.................................. 344

• Packaging Web Applications for Deployment.. 346

• Deploying Web Applications ... 347

344 Developing Applications with JRun
Overview of Application Assembly and Deployment
The Java Servlet Specification, Version 2.2 defines the roles of application assembler
and deployer. The application assembler takes the resources created by the
application developers and converts them into a deployable .war file. For information
on deploying EJBs, refer to Chapter 34. For information on deploying a complete J2EE
application, refer to Chapter 35.

Note that the implementation of these roles may vary at your site. At one site, a single
person may assume the roles of application developer, application assembler, and
deployer. At another site, the roles might map to separate groups of Java developers,
JSP developers, application assemblers, and deployers.

Note This chapter also assumes that you are developing and deploying
multiple Web applications, using the guidelines and directory structure
outlined in the Java Servlet Specification, version 2.2.

What is Web application assembly

Application developers code servlets, JSP pages, tag libraries, HTML files, and all other
elements required to develop and test their applications. The application assembler is
responsible for converting the application developers’ work into a deployable Web
application.

Before the application assembler can create a .war file, Java developers, JSP
developers, and QA staff must first complete the following Web application
development tasks:

Web Application Development Tasks

Tasks Where Explained

Develop servlets Section III

Develop JSP pages Section II

Develop tag handlers, TLD files, and TEI classes Chapter 21

Create .jar files for tag libraries and other utility classes Chapter 21

Modify properties files for security and
instrumentation

Chapter 38 and Chapter 39

Implement JavaBeans for use in JSP pages Chapter 33

Create servlet definitions, servlet mappings,
initialization parameters, MIME types, and other
environmental settings

JRun Setup Guide

Create and manage the web.xml file either through
JMC or manually

JRun Setup Guide

Chapter 33: Assembling and Deploying Web Applications 345
For more on application assembly, see “Packaging Web Applications for Deployment”
on page 346.

What is Web application deployment?

The deployer uses either the JMC or the JRun WarDeploy utility, along with the .war file
created by the application assembler, to install a Web application into a specific
operational environment. In addition to installing the .war file, the deployer also
configures the application for the operational environment, as necessary. For
example, the deployer may need to map security roles to site-specific users and
groups.

For more information, see “Deploying Web Applications” on page 347.

WAR files

You typically distribute a Web application as a single compressed.war file. The .war
file contains the complete directory structure and all files that define the application.
You create a .war file using the same tools that you use to create a .jar file.

You deploy a .war file using either the JMC or the JRun deployment tool, either of
which accepts the .war file and a set of server-specific parameters, expanding the
directory structure, updating settings and property files, as needed.

During deployment, JRun explodes the .war file and defines the new application in the
specified JRun server. Exploding a .war file is just JRun's mechanism for deployment.
Other servers may have different deployment requirements. For example, a database
vendor’s implementation may require that the contents of the .war file be inserted
into its database.

Note You deploy EJBs with .jar files. When packaging a J2EE enterprise
application, EJB .jar files and Web application .war files may both be
packaged as part of a J2EE enterprise archive (.ear) file. For more
information, refer to Chapter 34 and Chapter 35.

Maintain source code and class files in a centralized,
source-controlled, repository that reflects the Web
application directory structure

Site-specific

Perform thorough testing Site specific

Web Application Development Tasks (Continued)

Tasks Where Explained

346 Developing Applications with JRun
Packaging Web Applications for Deployment
The application assembler converts development output into a deployable Web
application. Input to the Web application assembly process includes the following:

• Java .class files for servlets, utilities, tag handlers, and TEI classes

• Third-party classes and libraries

• TLD files (if not contained in the tag library’s .jar file)

• The web.xml file

• Application-specific properties files

• Documentation, including JavaDocs and usage notes

Output from the application assembly process includes the following:

• A .war file

• Installation notes

• Configuration guidelines

Note Don’t forget to test the deployable .war file thoroughly, using all
supported combinations of hardware platform, operating system, Web
server, and JVM.

Disabling JSP page compilation

For performance and security reasons, you may want to disable JSP page compilation
and distribute only the binary .class files rather than your text-based .jsp files. This
is a two-step process:

• Disabling dynamic JSP compilation

• Precompiling JSP pages with the JSPC compiler

See Chapter 10 for complete information on these tasks.

Creating a .war file

You create a .war file using the Java jar utility. This utility has the following syntax:

jar options output-file input-files

options
One or more of the following:

• c (create). Create the .war file.

• f (file). Create a file rather than direct to stdout.

• v (verbose). Display file names as they are added to the .war file.

• 0 (zero). No compression.

Chapter 33: Assembling and Deploying Web Applications 347
• M (manifest). Do not create the default manifest file.

output-file
Specifies the name of the file produced by the jar utility. Be sure to use the .war
suffix.

input-files
Space-separated list of files to add to the .war file. Use the wildcard character (*)
to add multiple files. If you specify any directories, the jar utility adds them
recursively.

For more information on the jar utility, access the Sun Web site and search for jar.

The following example creates a .war file of the JRun default application (assuming a
current directory of jruninstalldirectory/servers/default/default-app):

jar -cf default.war *.*

Deploying Web Applications
Deployers use the JRun deployment tool to install a Web application. You can use
either the JMC or the command line interface.

The Web application deployment process involves the following:

• Expanding the .war file into a directory structure

• Adding the Web application to a JRun server

• Defining an application mapping for the Web application.

For more information on application mappings, see “Application mappings” on page
69.

Before beginning the deployment process, you must know the following:

• The location and full directory path of the .war file.

• The name of the JRun server to contain the deployed Web application.

• The name of the Web application. JRun uses this name in the JMC and when to
the log.

• The application hosts.

• The URL prefix used by clients to access the Web application.

• The full path of the directory into which the Web application is to be deployed.
This directory must already exist. Existing files with the same name will be
overwritten by the deployment process.

Using the JMC

You can use the JMC to deploy a Web application.

348 Developing Applications with JRun
To deploy a Web application using the JMC, perform the following steps:

1. Log on to the JMC.

2. Click (don’t expand) the server to which the Web application will be deployed.

3. Click Web Applications.

4. In the right pane, click Deploy an Application.

5. Specify information.

6. Click deploy.

For complete information, refer to the JRun Setup Guide.

Using the command line interface

The command line interface to the Web application deployment tool allows you to
deploy a .war file using a set of parameters. The interface accepts parameters from a
properties file and from the command line.

This section describes the syntax and property file format used by the command line
interface.

Syntax

The WarDeploy utility allows you to deploy, remove, and redeploy a Web application. It
is contained in the jrun.jar file. Use the following syntax:

java allaire.jrun.tools.WarDeploy -deploy -config=deploy.properties

java allaire.jrun.tools.WarDeploy -remove -config=remove.properties

java allaire.jrun.tools.WarDeploy -redeploy -config=remove.properties

Property file format

The deploy.properties file contains the following:

• deploy.war.path=full path to .war file

• deploy.server.name=default | servername

• deploy.webapp.name=application name

• deploy.context.path=/context path

• deploy.webapp.rootdir=web application root directory (full path)

• deploy.jrun.rootdir=JRun root directory (full path)

The following sample shows a deploy.properties file:

deploy.war.path=c:\\testdeploy\\rds-app.war
deploy.server.name=default
deploy.webapp.name=testdeploy
deploy.context.path=/testdeploy
deploy.webapp.rootdir=c:\\testdeploy
deploy.jrun.rootdir=c:\\program files\\allaire\\jrun

Chapter 33: Assembling and Deploying Web Applications 349
Note You must escape slashes in a pathname, ’\’, in this file with a second
slash, ’\\’.

The remove.properties file contains the following:

• deploy.server.name=default | servername

• deploy.webapp.name=application name

• deploy.jrun.rootdir=JRun root directory (full path)

The following sample shows a remove.properties file:

deploy.server.name=default
deploy.webapp.name=testdeploy
deploy.jrun.rootdir=c:\\program files\\allaire\\jrun

Defining users and roles for authentication

For authentication reasons, the deployer may need to define users and roles for the
deployed Web application. For more information, see Chapter 38.

350 Developing Applications with JRun

C H A P T E R 3 4
Chapter 34 Deploying Enterprise JavaBeans
Contents

• Overview ... 352

• Supplying The Properties .. 353

• Creating The Jar Files ... 357

• Running the Deploy Tool ... 357

• Including Additional Classes... 359

• Using Dynamic Bean Loading... 359

• The Runtime Environment.. 360

352 Developing Applications with JRun
Overview
Once you have developed your beans and defined the home and remote interfaces,
you are ready for deployment. Note, however, that the term deployment has a slightly
different meaning when applied to EJBs in JRun. With servlets, you compile, test, and
finally deploy for distribution. With EJBs, you compile, deploy for testing, test, and
finally deploy for distribution.

Perform the following steps during bean deployment:

1. Compile the remote interface, home interface, and bean implementation.

2. Create property files, optionally including a bean properties file (or deployment
descriptor) and a manifest file.

3. Create a .jar file and copy it to the /deploy directory.

4. Run the deploy tool.

The components of the bean deployment process are shown in the following
illustration.

The inputs to the Deploy tool are the deploy.properties file and the .jar file, both of
which must be located in the /deploy directory. The Deploy tool saves its output in the
/deploy subdirectory, which is copied automatically to the /runtime directory when
starting JRun.

Chapter 34: Deploying Enterprise JavaBeans 353
Supplying The Properties
The first thing you will need to do is set some properties so the Deploy tool will
properly generate the home and remote interface implementations and also generate
the runtime.properties file. The properties files and the manifest file can be created
using any text editor. See the /samples subdirectory to view existing properties files.

For complete information on properties accepted by the EJB engine, refer to the
EjbProperties and EjiptProperties interface documentation in the JRun JavaDocs.
These interfaces define an internal constant for each property and include property-
specific definitions.

Bean properties

Each EJB must be defined either through a descriptor file or through an associated
properties file. This information is used by the Deploy tool when generating the home
and remote implementations. For more information on bean properties, see “Setting
Bean Properties” on page 255.

Naming beans

There are no requirements or restrictions on naming beans or their interfaces. Since
no assumptions can be made on naming conventions, the bean developer must
specify the names of the bean’s home interface, the bean’s remote interface and the
bean’s implementation in the bean’s properties file. For example a Customer could
have the following entries (recommended convention):

ejb.homeInterfaceClassName=ejbeans.CustomerHome
ejb.remoteInterfaceClassName=ejbeans.Customer
ejb.enterpriseBeanClassName=ejbeans.CustomerBean
#However, it could have the following entries (not recommended):
#ejb.homeInterfaceClassName=ejbeans.Abc
#ejb.remoteInterfaceClassName=ejbeans.Xyz
#ejb.enterpriseBeanClassName=ejbeans.SomeBean

An entity bean’s primary key class type must be specified. This is used by the Deploy
tool when generating the class implementation and also by the container when using
container managed persistence.

#Primary Key Class Type
ejb.primaryKeyClassName=ejbeans.PK

Home name

A developer must specify the home name associated with a bean in the JNDI
namespace. This property is used to bind home objects in JNDI contexts.

ejb.beanHomeName=sample1a.CustomerHome

354 Developing Applications with JRun
State management

The ejb.stateManagementType property specifies how a session bean’s state is
managed. Valid values are: stateful_session and stateless_session. If not
specified, the EJB engine assumes the bean to be an entity bean.

ejb.stateManagementType=stateful_session

Allowed identities

A developer can implement role-based security by using the allowedIdentities
property to specify a list of identities or roles allowed to invoke either all the methods
or a specific method of a bean. If not specified, the property defaults to all
authenticated users. To specify method-level security, use the method name as a
prefix.

The special value ‘system’ allows only calls with a system identity to execute methods.

remove.ejb.allowedIdentities=system

The special value ‘all’ signifies all users, without regard for authentication. The
following example allows all users to use the create and getValue methods but
restricts the save method to those in the saver role and the spend method to those in
the spender role:

create.ejb.allowedIdentities=all
getValue.ejb.allowedIdentities=all
save.ejb.allowedIdentities=saver
spend.ejb.allowedIdentities=spender

Object timeout

Using the ejb.sessionTimeout, a bean can specify the number of seconds before a
session object times out. If this is not specified timeout defaults to 900 (15 minutes).

ejb.sessionTimeout=300

ejipt.isTimeoutFromCreate is the property for specifying whether the timeout for
session objects starts from the moment of creation or from the last access. If this
property is not specified then it defaults to last access.

ejipt.isTimeoutFromCreate=true

Additional properties can be specified for a bean. For a complete list of available
properties, refer to the EjiptProperties API documentation in the JRun JavaDocs.

Deployment descriptor

You can use an XML deployment descriptor as an alternative to the bean properties
file and manifest file. For more information on using a deployment descriptor, see
“Setting Bean Properties” on page 255.

The following example shows an XML deployment descriptor for Sample1a in the JRun
Samples Guide:

Chapter 34: Deploying Enterprise JavaBeans 355
<?xml version="1.0" encoding="UTF-8" ?>
<ejb-jar>
 <description>no description</description>
 <display-name>ConvertJAR</display-name>
 <enterprise-beans>
 <entity>

 <description>no description</description>
 <display-name>BalanceBean</display-name>
 <ejb-name>sample1a.BalanceHome</ejb-name>
 <home>ejbeans.BalanceHome</home>
 <remote>ejbeans.Balance</remote>
 <ejb-class>ejbeans.BalanceBean</ejb-class>
 <prim-key-class>java.lang.Integer</prim-key-class>

 <env-entry>
 <env-entry-name>ejipt.isCreateSilent</env-entry-name>
 <env-entry-value>true</env-entry-value>
 </env-entry>
</entity>

 </enterprise-beans>
 <assembly-descriptor>
 <method-permission>

 <role-name>all</role-name>
 <method>
 <ejb-name>sample1a.BalanceHome</ejb-name>
 <method-name>create</method-name>
 </method>
 <method>
 <ejb-name>sample1a.BalanceHome</ejb-name>
 <method-name>getValue</method-name>
 </method>

 </method-permission>
 <method-permission>

 <role-name>saver</role-name>
 <method>
 <ejb-name>sample1a.BalanceHome</ejb-name>
 <method-name>save</method-name>
 </method>

 </method-permission>
 <method-permission>

 <role-name>spender</role-name>
 <method>
 <ejb-name>sample1a.BalanceHome</ejb-name>
 <method-name>spend</method-name>
 </method>

 </method-permission>
 </assembly-descriptor>
</ejb-jar>

Default properties

The default.properties file generally specifies the container level properties. The
properties set in this file can be accessed by all beans within the particular container.

356 Developing Applications with JRun
For example you can set the number of available contexts for all beans, or you may
want to limit the number of contexts for a specific bean. You can also specify
properties that are applicable to all beans in the jar rather than specifying them in each
bean’s property file.

ejipt.maxContexts=100
BigBean.ejipt.maxContext=5

Properties set in the default.properties file will affect only the beans in that
container. Prefixing the bean’s name to the properties will set the property for that
bean only.

Manifest

If you are not using a descriptor file, you must include a manifest file, which identifies
the beans in the .jar file.

Each bean to be deployed must have its properties file listed in the manifest along
with the entry ‘Enterprise-Bean: True’. For each EJB in subdirectory /ejbeans you
would have the following two entries:

Name: ejbeans/Customer.properties
Enterprise-Bean: True

The path to the properties file must be the same as the path listed in the manifest file,
except the slashes, where the manifest file should always contain the forward slash.
Also, the name/enterprise-bean pairs must be separated by a blank line.

Deploy properties

The deploy.properties file generally contains server level properties and is used by
the Deploy tool to determine the beans to be deployed, host name, data sources, and
connection limits. You store the deploy.properties files in the /deploy directory. The
following example shows a typical deploy.properties file (properties with # as a
prefix are comments):

ejipt.classServer.host=localhost
ejipt.ejbJars=sample_ejb.jar
ejipt.jdbcSurces=source1
source1.ejipt.sourceURL=jdbc:odbc:sampledb
#source1.ejipt.sourceUser=xyz
#source1.ejipt.sourcePassword=pass
ejipt.logStackTrace=true
ejipt.userHomeName=sample.CustomerHome
ejipt.roleHomeName=ejipt.RoleHome
ejipt.loginSessionHomeName=sample.CustomerSessionHome
ejipt.storeName=default

ejipt.classServer.host identifies the host name. When running locally you can
leave the value set to localhost. However if remote clients will be connecting, the
value must be set to the host name of the server. If left unspecified the property
defaults to the current host’s name.

Chapter 34: Deploying Enterprise JavaBeans 357
The ejipt.ejbJars property is used for specifying the list of jar files to be deployed.
The value of the property must be a comma separated list of jar files that are to be
deployed. The listed jars must be in the /deploy directory. If not specified, the property
defaults to all the jar files in the deploy directory. Each jar file has its own container in
the server.

The ejipt.jdbcSources and source1.ejipt.source... properties specify database
information. For additional information, see “Bean Managed Persistence” on page 275
and “Container Managed Persistence” on page 281.

ejipt.logStackTrace=true specifies that any stack traces will be logged in detail.

ejipt.userHomeName, ejipt.roleHomeName, and ejipt.loginSessionHomeName all
refer to user authentication and security. For additional details, see “Resource
Management” on page 261.

The instance.store is the default store used by all containers in a server. You can
specify a unique name for the instance.store by setting the ejipt.storeName
property. You can also specify an instance store for a particular bean by prefixing the
bean’s name to the property as follows:

Customer.ejipt.storeName=Customer.store

Creating The Jar Files
Before creating the jar files, you must first compile your files. The simplest way to
compile multiple files is to create a file named sources that contains the names of the
files to be compiled. Each file name must be on a new line. See the javac
documentation for more information.

Once you have created the ‘sources’ file, enter the following commands, setting
project and projectpath values to those appropriate for your environment:

> cd projectpath
> javac -classpath projectpath; /JRUN_HOME/lib/ejipt.jar @sources

Now enter the following commands to create the jars:

> cd projectpath
> jar cmf ejbeans/manifest projectpath\project_ejb.jar

ejbeans/*.class ejbeans/*.properties default.properties

Running the Deploy Tool
The Deploy tool is used to prepare beans for deployment with JRun. It performs the
following:

• Generates the home and object implementations for the beans listed in the
provided bean jars.

• Creates stub classes for the generated objects.

358 Developing Applications with JRun
• Creates skeletons required for use with JDK 1.1-based clients.(only if the
deploy.properties file specifies ejipt.isCompatible=true).

• Prepares the runtime.properties file using the properties from
deploy.properties and the current environment. The runtime.properties
file is used by JRun to establish the runtime environment.

The Deploy tool operates only in the /deploy directory. All input (including the bean
jars) must be available in the /deploy directory and all generated output is placed in
the /deploy directory.

The tool processes the bean jars listed in the ejipt.ejbJars property of the
deploy.properties file. If the property is missing, the tool processes all jars found in
the /deploy directory, excluding ejipt_objects.jar, ejipt_exports.jar and
extra_exports.jar. Output of the Deploy tool includes ejipt_objects.jar,
ejipt_exports.jar and runtime.properties.

The Deploy tool generates the home and remote object implementations and by
default uses the standard JDK compiler. However, you can use a different compiler by
overriding the ejipt.javac property in the deploy.properties file.

To deploy EJBs using the Deploy tool enter the following commands:
> cd jruninstalldirectory
> java -Djava.security.policy=jrun.policy
-classpath lib/ejipt_tools.jar allaire.ejipt.tools.Deploy

To deploy EJBs using the JMC, perform the following steps:

1. Log on to the JMC.

2. Click (don’t expand) the server to which the EJB will be deployed.

3. Click Enterprise JavaBeans.

4. Click EJB Deployment.

The Deploy Enterprise JavaBeans panel displays the deploy.properties file and a
list of EJB .jar files in the /deploy directory. Each EJB .jar file contains the
remote interface, home interface, and bean implementations to be deployed.

5. (Optional) Click Browse to select an EJB.jar file that is not in the /deploy
directory. The JMC deployment process copies this .jar file to the /deploy
directory.

6. (Optional) Add or modify lines in the deploy.properties file, which is displayed
in the Deploy Properties text area. To deploy multiple EJB .jar files, specify their
.jar file names in the ejipt.ejbJars property using a comma-separated list. For
more information, refer to “Deploy properties” on page 356.

7. Click deploy.

The JMC updates the deploy.properties file, copies any specified EJB .jar files to
the /deploy directory, and invokes the Deploy tool.

For complete information, refer to the JRun Setup Guide.

Chapter 34: Deploying Enterprise JavaBeans 359
Redeploy

The -redeploy option forces the tool to generate object implementations only for new
or updated beans. To redeploy, enter the following commands:

> cd jruninstalldirectory
> java -Djava.security.policy=jrun.policy -classpath

lib/ejipt_tools.jar allaire.ejipt.tools.Deploy -redeploy

Including Additional Classes
When deploying with JRun, all the generated stubs for the deployed EJB objects will be
inserted into ejipt_exports.jar. For any additional classes that must be included
into the exports jar, create extra_exports.jar and copy it to the /deploy directory.
The EJB engine automatically incorporates the contents of any extra_exports.jar
found in the /deploy directory into ejipt_exports.jar.

Using Dynamic Bean Loading
Dynamic bean loading allows you to recompile and execute modified bean class
implementations without redeploying. By eliminating the need to recompile and
redeploy the entire .jar file, dynamic bean loading can save you time during the
development and testing phases. This feature is also useful when multiple developers
work concurrently on an EJB server.

Dynamic bean loading is not designed for home and remote interfaces. This means
that you cannot use dynamic bean loading if a modification to the bean’s class
implementation requires changes to the home and remote interfaces.

Note Dynamic bean loading is only possible when running the EJB engine in
standalone mode (that is, when started from a command line via the
java allaire.ejipt.Ejipt command). It is not available when running
the EJB engine under JRun. For more information on stand-alone mode,
see “Running the EJB engine in stand-alone mode” on page 339.

To use dynamic bean loading:

1. Modify the bean implementation, as necessary.

2. Compile the bean implementation into the runtime/classes directory.

3. From the EJB engine command line, use the load command to reload the bean
from the runtime/classes directory.

This command quiesces the current instance and enables the new instance.

4. After testing is complete, be sure to integrate the changes into the bean’s .jar file.

360 Developing Applications with JRun
The Runtime Environment
When you deploy EJBs into a new environment, JRun requires that supporting files be
available in the server and client environments.

Server environment

The EJB engine requires that the following files be present in the server environment

Client environment

Clients must have a JRE installed. The EJB engine can run with either JDK 1.1 or JDK
1.2 clients, however remote activation and automatic exporting are only available for
1.2 clients.

The EJB engine requires that the following files be installed in the client environment:

JDK 1.1 clients must have access to the ejipt_exports.jar. Due to limitations with
JDK 1.1 ejipt_exports.jar must be explicitly installed on each JDK 1.1 client
machine.

Production Environment

File Description

Java Runtime The JRE must be installed on the server and must be version 1.2 or
higher.

Extensions The ejb.jar, jdbc.jar, jms.jar, jndi.jar, and jta.jar files must
be copied to the lib/ext directory of the JRE.

Client Environment

File Description

Java Runtime The JRE must be installed on each client. The JRE must be
version 1.1.6 (requires ejipt.isCompatible to be set to
true in deploy.properties) or higher (no special
properties required).

Extensions The ejb.jar, jts.jar, jndi.jar, and jta.jar files must
be copied to the /ext directory of the JRE.

ejipt_client.jar This file is located in the JRUN_HOME/lib directory.

ejipt_jms_client.jar This file is located in the JRUN_HOME/lib directory. It is
required only if the client will be using JMS.

C H A P T E R 3 5
Chapter 35 Deploying J2EE Applications
This chapter describes how to deploy J2EE applications.

Contents

• Overview ... 362

• What is J2EE application deployment?... 362

• EAR files .. 362

• Packaging J2EE Applications for Deployment ... 362

• Deploying J2EE Applications... 364

362 Developing Applications with JRun
Overview
If you have taken advantage of JRun’s full palette of features, your application will
contain JSP pages, servlets, custom tag libraries, and EJBs. An application that
implements these features is called a J2EE application.

What is J2EE application deployment?
The deployer uses either the JMC or the JRun EarDeploy utility, along with the .ear file
created by the application assembler, to install a J2EE application into a specific
operational environment. In addition to installing the .ear file, the deployer also
configures the application for the operational environment, as necessary. For example,
the deployer may need to implement authentication and security for servlets and EJBs.

For more information, see “Packaging J2EE Applications for Deployment” on page 362.

EAR files
You typically distribute a J2EE application as a single compressed .ear file. The .ear
file contains the complete directory structure and all files that define the application.
You create an .ear file using the same tools that you use to create a .jar file.

You deploy an .ear file using either the JMC or the JRun EarDeploy utility, either of
which accepts the .ear file and a set of server-specific parameters, populating the
directory structure, updating settings and property files, as needed.

During J2EE application deployment, JRun explodes the .war files contained in the
.ear file, defining new applications in the specified JRun server. JRun also deploys all
EJB .jar files contained in the .ear file.

The .ear file contains a META-INF/application.xml deployment descriptor, which
provides information to the JRun application deployment utilities.

Packaging J2EE Applications for Deployment
The application assembler converts development output into a deployable J2EE
application. Input to the application assembly process includes the following:

• .war files and other associated Web application files, as described in
Chapter 33.

• .jar files and other associated EJB-related files, as described in Chapter 34.

• The application.xml file.

Note A J2EE application must have no dependencies outside or the .ear file. If
your Web applications depend on virtual mappings to access libraries
(for example, jruninstalldirectory/lib), you must copy the required

Chapter 35: Deploying J2EE Applications 363
files to the Web application’s WEB-INF/lib directory before creating the
.war file. For more information on virtual mappings, see “Sharing classes
between Web applications” on page 55.

Output from the application assembly process includes the following:

• An .ear file

• Installation notes

• Configuration guidelines

Note Don’t forget to test the deployable .ear file thoroughly, using all
supported combinations of hardware platform, operating system, Web
server, and JVM.

Creating an application.xml file

The J2EE version 1.2 specification requires that application deployment be driven by
an XML deployment descriptor, named application.xml. This file defines the
components of a J2EE application. In particular, the application.xml file defines the
following:

• .war files for the application’s Web applications. Define a .war file, as follows:

<module>
 <web>
 <context-root>sample9a</context-root>
 <web-uri>sample9a.war</web-uri>
 </web>
</module>

• .jar files for the application’s EJBs. Define a .jar file, as follows:

<module>
 <ejb>sample9a_ejb.jar</ejb>
</module>

The following sample .ear file, used by Sample9a in the JRun Samples Guide, defines a
Web application and an EJB:

<!DOCTYPE application PUBLIC "-//Sun Microsystems, Inc.//DTD J2EE
Application 1.2//EN" "http://java.sun.com/j2ee/dtds/
application_1_2.dtd">

<application>
 <display-name>Sample 9a</display-name>
 <description>This sample demonstrates accessing beans from a servlet.</
description>
 <module>
 <ejb>sample9a_ejb.jar</ejb>
 </module>
 <module>
 <web>
 <context-root>sample9a</context-root>
 <web-uri>sample9a.war</web-uri>

364 Developing Applications with JRun
 </web>
 </module>
</application>

For complete information on the attributes used in an application.xml file, refer to
the Java 2 Platform Enterprise Edition Specification, v1.2.

Creating an .ear file

You create an .ear file using the Java jar utility.

For more information on the jar utility, see “Creating a .war file” on page 346.

The following example creates an .ear file for Sample 9a (assuming a current directory
of jruninstalldirectory/samples/sample9a):

jar cf sample9a.ear -C j2ee-app META-INF
jar uf sample9a.ear -C "%DEPLOY_DIR%" sample9a_ejb.jar
jar uf sample9a.ear sample9a.war

Deploying J2EE Applications
Deployers use the JRun deployment tool to install a J2EE application. You can use
either the JMC or the command line interface.

The J2EE application deployment process involves the following:

• Expanding .war files into a directory structure.

• Deploying EJB .jar files.

• Adding Web applications to a JRun server.

• Defining application mappings for the Web applications.

Before beginning the deployment process, you must know the following:

• The location and full directory path of the .ear file.

• The name of the JRun server to contain the deployed Web application.

Using the JMC

You can use the JMC to deploy a J2EE application.

To deploy a J2EE application using the JMC, perform the following steps:

1. Log on to the JMC.

2. Click (don’t expand) the server to which the J2EE application will be deployed.

3. Click Ear Deployment.

4. Specify information.

5. Click deploy.

Chapter 35: Deploying J2EE Applications 365
For complete information, refer to the JRun Setup Guide.

Using the command line interface

JRun provides the EarDeploy tool, which offers a command line interface to the J2EE
application deployment tool. EarDeploy allows you to deploy an .ear file using a set of
command-line parameters.

EarDeploy incorporates WarDeploy and the EJB Deploy tool. In order to provide this
functionality, it requires an extensive set of libraries, resulting in a very long
-classpath argument. In most cases, the JMC provides a simpler interface.

Syntax

The command line interface allows you to deploy, remove, and redeploy a J2EE
application using the following syntax (assumes you are positioned at the JRun install
directory):

java -classpath=classpathfiles allaire.jrun.tools.EarDeploy
-d earfile -s servername -j jruninstalldirectory

The following sample Windows batch file shows you how to run EarDeploy using the
required classpath files:

@echo off
set JRUN_HOME=c:\progra~1\allaire\jrun

set CP=%CP%;%JRUN_HOME%\lib\ext\ejb.jar
set CP=%CP%;%JRUN_HOME%\lib\ext\jaxp.jar
set CP=%CP%;%JRUN_HOME%\lib\ext\parser.jar
set CP=%CP%;%JRUN_HOME%\lib\ext\servlet.jar
set CP=%CP%;%JRUN_HOME%\lib\jrun.jar
set CP=%CP%;%JRUN_HOME%\lib\ejipt.jar
set CP=%CP%;%JRUN_HOME%\lib\ejipt_tools.jar

java -classpath %CP% allaire.jrun.tools.EarDeploy
-d %JRUN_HOME%\samples\sample9a\sample9a.ear -s default -j %JRUN_HOME%

rem The following line supports arguments for -d, -s, and -j
rem java -classpath %CP% allaire.jrun.tools.EarDeploy %1

Defining users and roles for security

The deployer may need to define security users and roles for the deployed J2EE
application. For more information on Web application user definition, see Chapter 38.
For more information on EJB user definition, see Chapter 34.

366 Developing Applications with JRun

Se c t i o n VI
Working with JRun Section VI
This section describes how to use basic features of JRun.

Contents

Monitoring Web Server Connections 369

Logging... 377

Web Application Authentication 397

JRun Instrumentation.. 417

Debugging and Error Messaging.......................... 429

JRun Extensions ... 443

Using JRun with ColdFusion.................................. 449

C H A P T E R 3 6
Chapter 36 Monitoring Web Server
Connections
One of the monitoring mechanisms that JRun provides allows you to obtain
statistical information about the connection between a Web server and JRun. These
statistics include requests handled, available threads for handling requests, and
heap memory usage.

This chapter describes the connection monitoring mechanism and includes
information on configuring this mechanism and controlling the information
collected by it.

Contents

• Monitoring the Web Server Connection... 370

• Monitoring Properties ... 375

370 Developing Applications with JRun
Monitoring the Web Server Connection
JRun can write status information to the JRun log files about the connection between a
JRun server and a Web server. You can obtain this status information from the
connection between a JRun server and a third-party Web server or the JRun Web server
(JWS).

The following figure shows the JRun default server with a connection to both a third-
party Web server and to the JWS.

To enable JRun to collect connection status information, you include the keyword
metrics in the list of logging levels specified to the property logging.loglevel in a
JRun server’s local.properties file. For more information on the JRun logging
mechanism, see Chapter 37.

For example, the following property enables connection status information:

logging.loglevel=info,warning,error,metrics

The connection information written to a log file can include any or all of the following:

• listenTh: threads listening for a new connection

• idleTh: threads waiting for a new request

• delayTh: threads waiting to run

• busyTh: threads currently running

• totalTh: total worker thread count

• delayRq: requests delayed due to high concurrency

• droppedRq: requests dropped

• handledRq: requests handled

• handledMS: milliseconds spent servicing requests not including any delay time
(delayMs)

• delayMs: milliseconds spent in delay state

• bytesIn: bytes read from request

• bytesOut: bytes written to response

Chapter 36: Monitoring Web Server Connections 371
• freeMem: KiloBytes of free memory in the heap

• totalMem: total KiloBytes in the heap (in use and free)

• sessions: current number of active sessions

• sessionsInMem: number of sessions in memory

Shown below is an example log message containing connection status information:

03/20 02:57:53 metrics (jcp+web) Heap=3151KB Listen=1 Idle=0 Queued=0
Busy=0 Total=0 Requests (count/total ms)=0/0 Delayed=0 TotalDelay=0
BytesIn=0 BytesOut=0 Sessions (active/in memory)=0/0

Configuring the monitoring mechanism

You use property files to configure the monitoring mechanism; you cannot control it
through the JRun Management Console (JMC).

The default settings for the monitoring mechanism for all JRun servers associated with
a single installation of JRun are stored in the global.properties file. If you want to
modify the default settings for an individual JRun server, modify them in the
local.properties file for that server.

The following property settings are the default settings in the global.properties file:

monitor.class=allaire.jrun.metrics.MetricsLogger
monitor.interval=60
monitor.format={monitor.combined-format}
monitor.max.history=10

These settings specify the class that defines the monitoring mechanism, the
monitoring interval in seconds, the output format of the monitoring information, and
the size of the monitoring history buffer. These settings specify that the monitoring
mechanism obtains statistics every 60 seconds and records the most recent 10
monitoring samples.

For more information on these properties, see “Monitoring Properties” on page 375.

Configuring the monitoring output format

The global.properties file contains the property monitor.format, which defines the
monitoring message format. By default, monitor.format is set as follows:

monitor.format={monitor.combined-format}

The monitor.combined-format format property is defined in the global.properties
file as follows:

monitor.combined-format=(jcp+web)
Heap={totalMemory}KB
Listen={{jcp.listenTh}+{web.listenTh}}
Idle={{jcp.idleTh}+{web.idleTh}}
Queued={{jcp.delayTh}+{web.delayTh}}
Busy={{jcp.busyTh}+{web.busyTh}}
Total={{jcp.totalTh}+{jcp.totalTh}}

372 Developing Applications with JRun
Requests={{jcp.handledRq}+{web.handledRq}}
Delayed={{jcp.delayRq}+{web.delayRq}}
TotalDelay={{jcp.delayMs}+{web.delayMs}}
BytesIn={{jcp.bytesIn}+{web.bytesIn}}
BytesOut={{jcp.bytesOut}+{web.bytesOut}}
Sessions (active/in memory)={sessions}/{sessionsInMem}

This format generates messages with the following form:

03/20 02:57:53 metrics (jcp+web) Heap=3151KB Listen=1 Idle=0 Queued=0
Busy=0 Total=0 Requests (count/total ms)=0/0 Delayed=0 TotalDelay=0
BytesIn=0 BytesOut=0 Sessions (active/in memory)=0/0

These setting have the following syntax:

monitor.<label>=(web | jcp | web+jcp)
String1={[web. | jcp.]statistic1}
String2={[web. | jcp.]statistic2}
...

You specify monitor.label to the monitor.format property to control the format of
the monitor information written to the log file.

monitor.<Label>=(web|jcp|web+jcp)
Specifies the label for the format definition and also specifies the whether this
format specification defines the format of the monitoring information from the
JWS (web), a third-party Web server (jcp), or both (web+jcp).

String={[web.|jcp.]statistic}
Specifies the format of a string in the monitoring output written to the log file. The
String= portion of the message is written directly to the log file without
modification. JRun replaces the [web.|jcp.]statistic portion of the message
with a statistical value where the information source of the statistic comes from
the JRun connection to the JWS (web) or a connection from a third-party Web
server (jcp).

The connection information written to a log file can include any or all of the
following statistics. Many of these statistics are prefixed by either jcp or web to
specify that the statistic came from a third-party Web server (jcp) or from the JWS
(web). However, some statistics are for the JVM associated with a JRun server and
therefore do not have any prefix.

• freeMem: KiloBytes of free memory in the heap

• totalMem: total KiloBytes of heap (in use and free)

• sessions: current number of active sessions

• sessionsInMem: number of sessions in memory

• [web.|jcp.]busyTh: threads currently running

• [web.|jcp.]delayTh: threads waiting to run

• [web.|jcp.]idleTh: threads waiting for a new request

• [web.|jcp.]listenTh: number of threads listening for a new connection

Chapter 36: Monitoring Web Server Connections 373
• [web.|jcp.]totalTh: total worker thread count

• [web.|jcp.]delayRq: number of requests delayed due to high concurrency

• [web.|jcp.]droppedRq: requests dropped

• [web.|jcp.]handledRq: requests handled

• [web.|jcp.]handledMS: number of milliseconds spent servicing requests not
including any delay time (delayMs)

• [web.|jcp.]delayMs: milliseconds spent in delay state

• [web.|jcp.]bytesIn: number of bytes read from request

• [web.|jcp.]bytesOut: number of bytes written to response

For example, you define the following format for the monitoring message:

monitor.combined-format=(jcp+web)
Heap={totalMemory}KB
Total={{jcp.totalTh}+{web.totalTh}}

This definition specifies that the message format applies to information from both the
JWS and from any third-party Web server. The monitoring message contains the
amount of heap memory and the total combined worker thread count for both the JWS
and for any third-party Web server.

The specification to display the combined total worker thread count for both the JWS
and for any third-party Web server from the previous example has the following
format:

Total={{jcp.totalTh}+{web.totalTh}}

As you can see, the displayed value is the sum of two values, one from the JWS and one
from any third-party Web server. This example shows that you can perform arithmetic
operations on statistical values as long as you enclose the full expression within
braces, {}.

Default monitoring formats

JRun supplies the following predefined formats in the global.properties file. You
can specify any one of these predefined formats to the monitor.format property, or
create your own.

Define a message format for combined monitoring information from both
the JWS and a third-party Web server.
This is the default monitoring format.
monitor.combined-format=(jcp+web)

Heap={totalMemory}KB
Listen={{jcp.listenTh}+{web.listenTh}}
Idle={{jcp.idleTh}+{web.idleTh}}
Queued={{jcp.delayTh}+{web.delayTh}}
Busy={{jcp.busyTh}+{web.busyTh}}
Total={{jcp.totalTh}+{web.totalTh}}
Requests (count/total ms)={{jcp.handledRq}+{web.handledRq}}/

{{jcp.handledMs}+{web.handledMs}}

374 Developing Applications with JRun
Delayed={{jcp.delayRq}+{web.delayRq}}
TotalDelay={{jcp.delayMs}+{web.delayMs}}
BytesIn={{jcp.bytesIn}+{web.bytesIn}}
BytesOut={{jcp.bytesOut}+{web.bytesOut}}
Sessions (active/in memory)={sessions}/{sessionsInMem}

Define a message format for monitoring information from the JWS only.
monitor.web-format=(web)

Heap={totalMemory}KB
Listen={web.listenTh}
Idle={web.idleTh}
Queued={web.delayTh}
Busy={web.busyTh}
Total={web.totalTh}
Requests (count/total ms)={web.handledRq}/{web.handledMs}
Delayed={web.delayRq}
TotalDelay={web.delayMs}
BytesIn={web.bytesIn}
BytesOut={web.bytesOut}
Sessions (active/in memory)={sessions}/{sessionsInMem}

Define a short message format for information from the JWS only.
monitor.web-short-format=(web)

Busy={web.busyTh}
Total={web.totalTh}
Requests={web.handledRq}
TotalDelay={web.delayMs}

Define a message format for monitoring information from a
third-party Web server only.
monitor.jcp-format=(jcp)

Heap={totalMemory}KB
Listen={jcp.listenTh}
Idle={jcp.idleTh}
Queued={jcp.delayTh}
Busy={jcp.busyTh}
Total={jcp.totalTh}
Requests (count/total ms)={jcp.handledRq}/{jcp.handledMs}
Delayed={jcp.delayRq}
TotalDelay={jcp.delayMs}
BytesIn={jcp.bytesIn}
BytesOut={jcp.bytesOut}
Sessions (active/in memory)={sessions}/{sessionsInMem}

Define a short message format for monitoring information from a
third-party Web server only.
monitor.jcp-short-format=(jcp)

Busy={jcp.busyTh}
Total={jcp.totalTh}
Requests={jcp.handledRq}
TotalDelay={jcp.delayMs}

Chapter 36: Monitoring Web Server Connections 375
Monitoring Properties
The following properties in the local.properties file control the collection of
connection status information:

monitor.class
Specifies the JRun class that defines connector monitoring. By default, this
property is set to allaire.jrun.metrics.MetricsLogger.

monitor.interval
Specifies the monitor interval in seconds. The default monitor interval is 60
seconds.

monitor.format
Specifies the format of the monitor information written to a log file. The default
value is {monitor.combined-format}. For more information on message format,
see “Configuring the monitoring output format” on page 371.

monitor.max.history
JRun can retain the connection statistics for a set number of samples. You can
then access these samples in order to average the statistics over time. This
property specifies the number of statistical samples to retain for averaging. The
default value is 10.

monitor.loggername
Optionally specifies the name of the logger to use for receiving connection status
information. By default, all output is directed to the log file for a JRun server.

This property allows you to create your own logger for receiving the output. For
example, you can use a logger to direct the output to its own file. For more
information on logging and loggers, see Chapter 37.

376 Developing Applications with JRun

C H A P T E R 3 7
Chapter 37 Logging
During application execution, JRun can output information, warning, error, and
debug messages. JRun includes a logging utility that enables you to forward run-time
information from your applications to several different destinations, including a file,
the screen, or an e-mail message.

This chapter describes the JRun logging mechanism.

Contents

• Logging.. 378

• Examples... 385

• Logging Properties ... 389

378 Developing Applications with JRun
Logging
JRun includes a logging utility that enables you to forward run-time information from
your executing applications to several different destinations, including a file, the
screen, or an e-mail message. JRun’s logging mechanism requires little overhead; so it
will have only a minimal affect on your application’s performance.

You can control the logging information tracked by JRun, which can include the
following:

• Informational messages

• Warning messages

• Error messages

• Debug information

• Metrics about the connection between a Web server and JRun (see Chapter 36)

The following example is an excerpt from a JRun log:

05/02 14:48:46 info (JRun) Loading monitor
05/02 14:48:46 warning (license) JRun 3.0 will expire on Jul 15, 2000
05/02 14:48:46 info (JRun) Loading license
05/02 14:48:46 info (JRun) Loading control
05/02 14:48:46 info (license) Enabling unlimited concurrency for JRun 3.0
05/02 14:48:46 info (control) control listening on *:53000
05/02 14:48:46 info (JRun) Loading ejb
05/02 14:48:52 info (ejb) Loading java:comp/env/ejb/TxnHome...

As you can see, the default log message format contains a date and time, the message
type, the JRun service generating the message, and the message contents. The logging
mechanism allows you to modify this message format.

By default, when a logging event occurs in your application, the event is placed in a
queue; and then control is returned immediately to the application. A background
thread then reads events from the queue and forwards the event to the appropriate
destination.

This design means that if you have configured the logging mechanism to write all
events to a file, your application does not need to wait for the log file to be updated.
This design also minimizes the overhead of the logging mechanism.

You run a separate JRun logging instance for each JRun server. For example, JRun
creates two servers, admin and default, during installation. You control the logging
mechanism for each JRun server separately. For each additional JRun server that you
create, you also control its logging mechanism.

The following figure shows the default configuration of the logging mechanism upon
installation of JRun.

Chapter 37: Logging 379
In this configuration:

1. All event types except debug are logged, and a single threaded logger functions as
the event listener. When an event occurs, it is written to the threaded logger’s
queue.

2. The threaded logger’s background thread reads events from the queue and sends
them to the file writer.

3. The file writer writes all events to a single file named <servername>-event.log in
the \logs directory under your JRun installation directory.

The logging mechanism is very flexible. A modification to the default configuration is
to write different event types to different files. In this case, you could have four output
files: one for each of the informational, warning, error, and debug messages. The
following figure shows the logging mechanism writing logging events to different files.

In this example, you create a dispatch logger. A dispatch logger routes a log event to an
output destination based on the event type. As you can see in this figure, you can
create a separate file writer to write each event to a different file.

Alternatively, you can configure the threaded logger to track only warning and error
events and ignore info and debug ones. For more configuration options, see “Logging
architecture” on page 380.

Logging components

This section describes the components that make up the logging mechanism. All of
these components are referred to as logging listeners because they are designed to
recognize logging events and take some action.

The JRun logging mechanism consists of the following components:

380 Developing Applications with JRun
• Threaded logger: Receives a logging event and forwards it to one or more
logging listeners. The threaded logger forwards events to all of its listeners.

The threaded logger consists of a queue and a background thread. When an
event occurs, the event is written to the queue, and control is returned
immediately back to your application. In this way, the threaded logger only
requires small amount of processing overhead, and therefore has the smallest
affect on your application of all available listeners.

• Dispatch logger: Receives a logging event and forwards it to one or more
logging listeners. The dispatch logger enables you to select which of its listeners
receives events based on the event types. Therefore, a dispatch logger may
forward events to four different listeners corresponding to the four different
event types.

• File writer: Receives a logging event and writes it to a file.

• E-mail writer: Receives a logging event and sends it to an e-mail message.

• Screen writer: Receives a logging event and writes it to the system’s standard
output device (typically the screen).

The first two components, threaded logger and dispatch logger, are special listeners in
that they receive an event and then forward that event to other listeners. The last three
components, the writers, are also listeners because they recognize a logging event.
However, a writer cannot forward an event; a writer can only write the event to its final
destination.

Logging architecture

The JRun logging mechanism is very flexible in its configuration. For example, you can
specify different destinations for log messages, generate multiple copies of a log
message, or send messages via e-mail message.

You can specify any listener as the event listener. However, the threaded logger is
explicitly designed to log events into a queue and then process the queue in the
background. All other components (dispatch logger, file, e-mail, and screen writers)
process events in the foreground. Therefore, if you specify a file writer as the listener,
control will not return back to your application until the file logger has written the
event out to a file.

This scenario is shown in the following figure.

Chapter 37: Logging 381
You can insert the threaded logger to minimize the response time of the logging
mechanism. In the next scenario, all logging events are routed from the threaded
logger directly to a file.

Another variation is to route events to a different destination based on the event type.
The next scenario includes a dispatch logger. The dispatch logger receives events from
the threaded logger and routes the event to one of four possible destinations based on
the event type. In this scenario, you create four log files for the four possible log events.

A final modification is to add e-mail notification to the logging mechanism as shown in
the following scenario.

In this scenario, you configure the threaded logger to write events to two different
destinations: a dispatch logger and an e-mail writer. The dispatch logger can then
forward all events to other writers. The e-mail writer is configured to recognize only
error messages. It will then write all error messages to an e-mail message.

This scenario also shows how you can route a single event (errors in this case) to two
different destinations (files and e-mail message).

382 Developing Applications with JRun
Configuring the JRun logging mechanism

To configure the JRun logging mechanism, you edit the JRun property file
local.properties for each JRun server. The following is an example of the properties
contained within this file:

Service class & info
and default message format
logging.class=allaire.jrun.logging.LoggingService
logging.format={date MM/dd hh:mm:ss} {log.level} ({log.name}) {log.message}

Logging levels, as a comma separated list.
Possible values are any combination of: debug,info,warning,error,metrics
Default list is: info,warning,error
logging.loglevel=info,warning,error

Specify the event listener.
You enable the logging mechanism using this property.
If the list of listeners is blank, no logging event are recorded.
logging.listeners=threadedlogger

These properties define the logging mechanism class name, the default description of
the logging mechanism, the format of the logging messages, the types of information
captured by the logging mechanism, and the name of the event listener.

This file contains many other properties that you can use with the logging mechanism.
For a complete list of these properties, and property descriptions, see “Logging
Properties” on page 389.

Editing property files

The JRun property files are sensitive to white space (spaces and tabs). You should not
include any extra white space characters in these files. For example, make sure there
are no white space characters after a comma in a comma-separated list or before a
carriage return at the end of a line.

Default configuration

The default configuration of the logging mechanism upon installation of JRun is to
ignore debug events and route informational, warning, and error events to a single file
using a threaded logger and a single file writer. This configuration is shown in the
following figure.

Chapter 37: Logging 383
Following are the property settings for this default configuration. For more
information on these properties, see “Logging Properties” on page 389.

Define the logging mechanism class, default message, and
default message fomrat.
You should not modify the logging.class property
logging.class=allaire.jrun.logging.LoggingService
logging.format={date MM/dd hh:mm:ss} {log.level} ({log.name}) {log.message}

Specify the logging levels (events) to track as a comma
separated list.
An empty list disables logging.
logging.loglevel=info,warning,error

Specify the event listener.
You enable the logging mechanism using this property.
If the list of listeners is blank, no logging event are recorded.
logging.listeners=threadedlogger

Define the threaded logger functioning as the event listener.
In addition, specify the file log writer that listens for events
from the threaded logger
logging.threadedlogger.class=allaire.jrun.logging.ThreadedLogger
logging.threadedlogger.listeners=filelogwriter

Define the default file writer. This file writer writes all events
to the same file.
logging.filelogwriter.class = allaire.jrun.logging.FileLogWriter
logging.filelogwriter.filename =

{jrun.roodir}/logs/{jrun.server.name}-event.log
logging.filelogwriter.rotationsize = 100000
logging.filelogwriter.rotationfiles = 5

Types of log events

The JRun logging mechanism can capture informational, warning, error, and debug
messages from your application. In addition, the logging mechanism can capture
metrics about the connection between a Web server and JRun (see Chapter 36).
However, you do not need to capture all of this information; you can configure JRun to
capture only the information that you need.

You use the local.properties file to configure the logging information captured by
JRun. By default, this file contains the following property setting:

Logging levels, as a comma separated list.
Possible values are any combination of: debug,info,warning,error,metrics
Default list is: info,warning,error
logging.loglevel=info,warning,error

This default setting configures JRun to capture logging messages for informational,
warning and error events and ignore debug events.

Note If the list of logging events is blank, all logging events are recorded.

384 Developing Applications with JRun
In some cases, you may only be interested in errors and warning. Therefore, you can
edit this property as follows:

logging.loglevel=warning,error

Now, the logging mechanism ignores informational and debug messages and captures
only warning and error messages.

Log information format

You can control the format of the log messages using properties in local.properties.
The following is an example log message in the default format:

12/01 04:21:49 info JRun 3.0 3.00.1738 Ready.

This default logging message has the following format:

{date MM/dd hh:mm:ss} {log.level} ({log.name}) {log.message}

where:

• {date MM/dd hh:mm:ss} defines the format of the optional date and time prefix
on the message. Log files store the time using a 24 hour clock format. Therefore,
a time of 1:00 PM is stored in the log files at 13:00

• {log.level} specifies whether to include the event type that generated the
message as either info, warning, error, or debug.

• ({log.name}) specifies the JRun service that generates the message.

• {log.message} is the actual message text.

You can include additional information in the message. For a list of all possible format
components, see the description of logging.format in “General properties” on page
389.

The next example configures the logging mechanism to log only error messages. In
addition, it configures the message format to only include the day, month, and
message. Because you are only logging errors, you do not need to include the
{log.level} information.

logging.loglevel=error

Service class & info
logging.format={day} {month} {log.message}

The following error event is in this format:

06 12 error could not initialize SnoopServlet

This error occurred on December 12 and was caused because JRun could not find the
servlet named SnoopServlet.

Chapter 37: Logging 385
Logging output to standard output and standard error

By default, each JRun server captures any information written by a Web application to
standard output and standard error and writes that information to a log file. The
default names of the log files are:

• {JRun home dir}/logs/servername-out.log for information written to
standard output.

• {JRun home dir}/logs/servername-err.log for information written to
standard error.

where servername is the name of the JRun server. JRun itself does not write any
information to these files; all JRun logging information is written to
servername-event.log.

You can override these file names and location using properties in the
local.properties file for the JRun server. For more information on these properties,
see “System logging properties” on page 395.

On UNIX, you can also configure JRun to direct information written to standard output
and standard error to the console window. In order to do so, start JRun from the
command line using the -console option. The following example shows this
command:

jrun -start default -console

For more information on the jrun command, see the JRun Setup Guide.

Examples
This section contains several examples of configurations for the logging mechanism.

Using multiple file writers

This example logs only warning and error messages. In addition, it defines two
different file writers: one for warnings and one for errors. This configuration is shown
in the following figure.

Following are the property settings for this example. Properties in bold are either
added or modified from the default property settings.

386 Developing Applications with JRun
logging.class=allaire.jrun.logging.LoggingService
logging.format={date MM/dd hh:mm:ss} {log.level} ({log.name}) {log.message}

logging.loglevel=warning,error

Specify the event listener.
logging.listeners=threadedlogger

Define the threaded logger functioning as the event listener.
logging.threadedlogger.class=allaire.jrun.logging.ThreadedLogger
logging.threadedlogger.listeners=dispatchlogger

Define the dispatch listener that routes events to the file writer.
logging.dispatchlogger.class=allaire.jrun.logging.DispatchLogger
logging.dispatchlogger.events={logging.warningevent},{logging.errorevent}
logging.dispatchlogger.destinations=fileWarnWriter,fileErrWriter

Define the warning file writer.
logging.fileWarnWriter.class = allaire.jrun.logging.FileLogWriter
logging.fileWarnWriter.filename = {jrun.roodir}/logs/warning.log
logging.fileWarnWriter.rotationsize = 100000
logging.fileWarnWriter.rotationfiles = 5

Define the error file writer.
logging.fileErrWriter.class = allaire.jrun.logging.FileLogWriter
logging.fileErrWriter.filename = {jrun.roodir}/logs/errors.log
logging.fileErrWriter.rotationsize = 100000
logging.fileErrWriter.rotationfiles = 5

Writing a log message to an e-mail message

This example modifies the previous example to create an e-mail message for all error
events rather than writing the error event to a log file. The configuration for this
example is shown in the following figure.

Following are the property settings for this example. Properties in bold are either
added or modified from the default property settings.

logging.class=allaire.jrun.logging.LoggingService
logging.format={date MM/dd hh:mm:ss} {log.level} ({log.name}) {log.message}

logging.loglevel=warning,error

Chapter 37: Logging 387
Specify the event listener.
logging.listeners=threadedlogger

Define the threaded logger functioning as the event listener.
logging.threadedlogger.class=allaire.jrun.logging.ThreadedLogger
logging.threadedlogger.listeners=dispatchlogger

Define the dispatch listener that routes events to the file writer.
logging.dispatchlogger.class=allaire.jrun.logging.DispatchLogger
logging.dispatchlogger.events={logging.warningevent},{logging.errorevent}
logging.dispatchlogger.destinations=fileWarnWriter,emailErrWriter

Define the warning file writer.
logging.fileWarnWriter.class = allaire.jrun.logging.FileLogWriter
logging.fileWarnWriter.filename = {jrun.roodir}/logs/warning.log
logging.fileWarnWriter.rotationsize = 100000
logging.fileWarnWriter.rotationfiles = 5

Define the mail writer.
You use properties to define the e-mail address, e-mail host, and
message format.
logging.emailErrWriter.class=allaire.jrun.logging.SmtpLogWriter
logging.emailErrWriter.from=JRun-Notification
logging.emailErrWriter.to=someone@mycompany.com
logging.emailErrWriter.host=mymailhost

The following is an example e-mail message for an error created by trying to invoke a
servlet that does not exist:

12/13 06:26:04 error javax.servlet.ServletException caught while running
servlet [javax.servlet.ServletException: The page ’/snoopservlet.jsp’
does not exist.]
javax.servlet.ServletException: The page ’/snoopservlet.jsp’ does not
exist.

In some cases, you may want to route an error message, or other message type, to both
a file and an e-mail message. In this way, you can notify the appropriate person of the
error by e-mail, and you can record all event information to a file. This next example
routes all error events to both a file and an e-mail message.

From: JRun-Notification

To: someone@mycompany.com

CC:

Subject: javax.servlet.ServletException caught while running servlet

388 Developing Applications with JRun
The following figure shows the configuration for this example.

In this example, you define two listeners to receive events from the threaded logger.
The dispatch logger takes the events from the threaded logger and routes them to one
of two possible file writers. The e-mail listener monitors only error events and
generates an e-mail message for them.

Following are the property settings for this example. Properties in bold are either
added or modified from the default property settings.

logging.class=allaire.jrun.logging.LoggingService
logging.format={date MM/dd hh:mm:ss} {log.level} ({log.name}) {log.message}

logging.loglevel=warning,error

Specify the event listener.
logging.listeners=threadedlogger

Define the threaded logger functioning as the event listener.
logging.threadedlogger.class=allaire.jrun.logging.ThreadedLogger
logging.threadedlogger.listeners=dispatchlogger,emailErrWriter

Define the dispatch listener that routes events to the file writer.
logging.dispatchlogger.class=allaire.jrun.logging.DispatchLogger
logging.dispatchlogger.events={logging.warningevent},{logging.errorevent}
logging.dispatchlogger.destinations=fileWarnWriter,fileErrWriter

Define the warning file writer.
logging.fileWarnWriter.class = allaire.jrun.logging.FileLogWriter
logging.fileWarnWriter.filename = {jrun.roodir}/logs/warning.log
logging.fileWarnWriter.rotationsize = 100000
logging.fileWarnWriter.rotationfiles = 5

Define the error file writer.
logging.fileErrWriter.class = allaire.jrun.logging.FileLogWriter
logging.fileErrWriter.filename = {jrun.roodir}/logs/errors.log
logging.fileErrWriter.rotationsize = 100000
logging.fileErrWriter.rotationfiles = 5

Define the mail writer.
You use properties to define the e-mail address, e-mail host, and
message format.
logging.emailErrWriter.class=allaire.jrun.logging.SmtpLogWriter
logging.emailErrWriter.from=JRun-Notification
logging.emailErrWriter.to=someone@mycompany.com

Chapter 37: Logging 389
logging.emailErrWriter.host=mymailhost
Use the loglevel property to define only those events to listen for.
logging.emailErrWriter.loglevel=error

Logging Properties
This section describes the following properties that you can use to configure the JRun
logging mechanism:

• “General properties” on page 389

• “Threaded logger properties” on page 390

• “Dispatch logger properties” on page 391

• “File writer properties” on page 392

• “E-mail writer properties” on page 394

• “Screen writer properties” on page 395

• “System logging properties” on page 395

General properties

This section describes the general properties that you use to configure and enable the
JRun logging mechanism. The properties described in this section have the following
format:

logging.propertyName = propertyValue

logging.loglevel
Specifies the event types to log as a comma-separated list. The default logging
level is set to:

info,warning,error

This default setting configures JRun to capture logging messages for
informational, warning and error events and ignore debug events. If the list of
logging events is blank, all logging event are recorded.

In addition, the logging mechanism can capture metric events about the
connection between a Web server and JRun (see Chapter 36).

logging.listeners
Specifies a comma-separated list of logging event listeners. This list corresponds
to the logical names of the listeners recording the actual event logs.

You enable the logging mechanism using this property. If the list of listeners is
blank, no logging events are recorded.

The default configuration of the logging mechanism upon installation of JRun sets
this property to threadedlogger, the logical name of the default threaded logger.
In this default setup, the threaded logger records all logging events and then

390 Developing Applications with JRun
routes them to the default dispatch logger. For a description of the default settings
of the logging mechanism, see “Default configuration” on page 382.

For each of the listeners specified here, you must specify the properties that define
that listener in the property file.

logging.format
Specifies the format of logging messages.

The default message format is:

{date MM/dd hh:mm:ss} {log.level} ({log.name}) {log.message}

This format specifies that the message contains the date, time, event type, and
message text. You can use the following options to specify the message format:

• {date}: The current date in the format yyyyMMdd.

• {date <format>}: Specifies the format to be used with the current date. See the
documentation for the class java.text.SimpleDateFormat in the Java
documentation in the <JRun home dir>/docs/api directory for a description
of the legal values for <format>.

• {day}: The day of the month in the range 1-31.

• {month}: The month of the year in the range 1-12.

• {year}: The 4-digit year.

• {hour}: The hour of the day in the range 0-23.

• {julian}: The current julian date.

• {thread.name}: The current thread name.

• {thread.hashcode}: The current thread hashcode.

• {thread.id}: The current thread ID, which is the hashcode in an 8-character
hexadecimal format.

• {log.message}: The log event message.

• {log.level}: The log event type (debug, error, info, warning).

• {log.name}: The name of the JRun service that generates the log message.

Threaded logger properties

A threaded logger receives a log event and places the event in a queue. A background
thread then operates on the queue, sending each log event on to one or more listeners.
This section describes the properties that control a threaded logger.

The properties described in this section have the following format:

logging.<loggerName>.propertyName = propertyValue

where loggerName is the logical name of your threaded logger.

Chapter 37: Logging 391
By default, JRun creates a threaded logger, named threadedlogger, with the following
properties:

logging.threadedlogger.class=allaire.jrun.logging.ThreadedLogger
logging.threadedlogger.listeners=filelogwriter

As you can see from these properties, the default threaded logger sends all events to a
single file log writer.

logging.<loggerName>.class
Specifies the name of the threaded logger class. You must use a property value of
allaire.jrun.logging.ThreadedLogger.

logging.<loggerName>.listeners
Specifies the listeners receiving the events from the threaded logger’s queue. You
must define at least one listener, either a dispatch logger or any one of the writers,
to receive the output of the threaded logger.

The default configuration of the logging mechanism upon installation of JRun sets
this property to filelogwriter, the logical name of the default file writer. The
default file writer then routes all events to a single file writer. For a description of
the default settings of the logging mechanism, see “Default configuration” on
page 382.

Dispatch logger properties

The dispatch logger receives a logging event and forwards it to one or more logging
listeners. The dispatch logger allows you to select which of its listeners receives events
based on the event types. Therefore, a dispatch logger may forward events to four
different listeners corresponding to the four different event types.

The properties described in this section have the following format:

logging.<dispatchLoggerName>.propertyName = propertyValue

where dispatchLoggerName is the logical name of your dispatch logger.

By default, JRun defines a single dispatch logger using the following properties:

logging.dispatchlogger.class=allaire.jrun.logging.DispatchLogger
logging.dispatchlogger.events={logging.infoevent},{logging.debugevent},

{logging.warningevent},{logging.errorevent}
logging.dispatchlogger.destinations=filelogwriter,filelogwriter,

filelogwriter,filelogwriter

These properties create a dispatch logger named dispatchlogger. You can use this
dispatch logger to receive all of the events from the default threaded logger and then
routes these events to one or more log writers.

logging.<dispatchLoggerName>.class
Specifies the name of the threaded logger class. You must use a property value of
allaire.jrun.logging.DispatchLogger.

392 Developing Applications with JRun
logging.<dispatchLoggerName>.events
Specifies the events dispatched by the dispatch logger as a comma-separated list.
The default value is:

{logging.infoevent},{logging.debugevent},{logging.warningevent},
{logging.errorevent}

Specify only those events that you want the dispatch logger to forward.

logging.<dispatchLoggerName>.destinations
Specifies a comma-separated list of the destination listeners of the events from
the dispatch logger. You specify the listeners in the order corresponding to the
events specified by the logging.dispatchlogger.events property.

The default value is:

filelogwriter,filelogwriter,filelogwriter,filelogwriter

This setting specifies that all events are written to the default file writer.

File writer properties

This section describes how to configure a file writer. A file writer takes an event and
writes it to a file.

The properties described in this section have the following format:

logging.<fileLoggerName>.propertyName = propertyValue

where fileLoggerName is the logical name of your file writer.

The default configuration of the logging mechanism upon installation of JRun defines
a single file writer using the following properties:

logging.filelogwriter.class = allaire.jrun.logging.FileLogWriter
logging.filelogwriter.filename =

{jrun.roodir}/logs/{jrun.server.name}-event.log
logging.filelogwriter.rotationsize = 100000
logging.filelogwriter.rotationfiles = 5

These properties create a file writer named filelogwriter. By default, all events are
written to a single file named {jrun.server.name}-event.log in the logs directory
under your JRun installation directory. For a description of the default settings of the
logging mechanism, see “Default configuration” on page 382.

logging.<fileLoggerName>.class
Specifies the name of the file writer class. You must use a property value of
allaire.jrun.logging.FileLogWriter.

logging.<fileLoggerName>.filename
Specifies the name of the destination file for all events written by this file logger.

By default, the file is named {jrun.server.name}-event.log in the logs
directory under your JRun installation directory where {jrun.server.name}
corresponds to the name of a JRun server such as admin or default.

Chapter 37: Logging 393
logging.<fileLoggerName>.rotationsize
Optionally specifies the maximum size of the log file, in bytes, before rotation.
When a file is rotated, the logging mechanism stops writing to the current log file
and creates a new log file. All new events are written to the new log file. This
property enables you to control the maximum size of your log files.

The logging mechanism enables you to specify how many log files it will retain
using the property logging.fileLoggerName.rotationfiles. For example, if you
set rotationfiles to 2, the logging mechanism will keep two log files for the log
writer. When an event causes a log file to exceed its rotation size, and if two log
files already exist, the oldest log file is deleted and a new one is created.

The default value of rotationsize is 100000. You can specify the size in bytes,
kilobytes (i.e., 10k), or megabytes (i.e., 10m).

For example, you configure the file writer to write logging event to the file
event.log and you set rotationfiles=3 and rotationsize=100000. When the
next log event causes the size of the log file to exceed 100000 bytes, the log file will
be rotated, and the following occurs:

• event_3.log is deleted (if it exists)

• event_2.log (if it exists) is renamed to event_3.log

• event_1.log (if it exists) is renamed to event_2.log

• event.log is renamed to event_1.log

• event.log is created

logging.<fileLoggerName>.rotationfiles
See notes for logging.<fileLoggerName>.rotationsize.

The default value is 5.

logging.<fileLoggerName>.format
Specifies the format of the log message. This setting overrides the log format
specified using the logging.format format. For the list of values for this property,
see the description of logging.format in “General properties” on page 389.

logging.<fileLoggerName>.heading
Specifies a log file heading inserted at the beginning of the log file when JRun first
writes to the file. Headings can contain any text, including dynamic properties
such as timestamps. The following example writes the creation date and time to
the log file:

logging.filelogwriter.heading==# Created on {date MM/dd hh:mm:ss}

You can also use the property logging.fileLoggerName.heading.lineN to insert
a heading into a log file. The logging.fileLoggerName.heading and
logging.fileLoggerName.heading.lineN properties are mutually exclusive; that
is, you can only use one form in a property file.

394 Developing Applications with JRun
logging.<fileLoggerName>.heading.lineN
Specifies one line of a log file heading inserted at the beginning of the log file when
JRun first writes to the file. The property component lineN specifies the line
number of the heading.

Headings can contain any text, including dynamic properties such as timestamps.
The following example writes the creation date and time to the log file:

logging.filelogwriter.heading.line1=#-------------------------------
logging.filelogwriter.heading.line2=# Created on {date MM/dd hh:mm:ss}
logging.filelogwriter.heading.line3=# This is a JRun log file
logging.filelogwriter.heading.line4=#-------------------------------

The line numbers must be in sequential order starting with 1. The log writer will
stop searching for heading lines whenever the next sequential number is missing
(5, in this example).

E-mail writer properties

If you want to direct log messages to an e-mail message, you create an e-mail writer.
This section describes the properties that you set for an e-mail writer.

The properties described in this section have the format:

logging.<mailLoggerName>.propertyName = propertyValue

where mailLoggerName is the logical name of your e-mail writer.

logging.<mailLoggerName>.class
Specifies the name of the mail writer class. You must use a property value of
allaire.jrun.logging.SmtpLogWriter.

Note The e-mail writer requires sun.net.smtp.SmtpClient, which may
not be available for all servers.

logging.<mailLoggerName>.from
Specifies the "from" portion of the generated e-mail address. No white space is
allowed in the value.

logging.<mailLoggerName>.to
Specifies the "to" portion of the generated e-mail address. No white space is
allowed in the value.

logging.<mailLoggerName>.host
Specifies the e-mail host. No white space is allowed in the value.

logging.<mailLoggerName>.loglevel
Specifies a comma-separated list of the log events that generate an e-mail
message. Possible values include info, warning, error, and debug.

Chapter 37: Logging 395
logging.<mailLoggerName>.format
Specifies the format of the log message. This setting overrides the log format
specified using the logging.format format. For the list of values for this property,
see the description of logging.format in “General properties” on page 389.

Screen writer properties

This section describes how to configure a screen writer. A screen writer takes an event
and writes it to standard output, which typically corresponds to your screen.

The properties described in this section have the following format:

logging.<screenLoggerName>.propertyName = propertyValue

where mailLoggerName is the logical name of your screen writer.

logging.<screenLoggerName>.class
The name of the screen writer class. You must use a property value of
allaire.jrun.logging.ScreenLogWriter.

logging.<screenLoggerName>.format
The format of the log message. This setting overrides the log format specified
using the logging.format format. For the list of values for this property, see the
description of logging.format in “General properties” on page 389.

System logging properties

By default, each JRun server captures any information written by a Web application to
standard output and standard error and writes that information to a log file. You can
use the following properties to set the name and location of these log files and to
configure JRun to include a stack trace in the log file.

java.System.out
Sets the name and location of the file for information written to standard output.
By default, JRun writes this information to:

{JRun home dir}/logs/servername-out.log

where servername is the name of the JRun server.

java.System.err
Sets the name and location of the file for information written to standard error. By
default, JRun writes this information to:

{JRun home dir}/logs/servername-err.log

where servername is the name of the JRun server.

396 Developing Applications with JRun

C H A P T E R 3 8
Chapter 38 Web Application
Authentication
Security is critical to many Web servers and applications. Security guarantees that
only authorized users have access to the resources on a Web site. The latest Java
Servlet API defines an authentication mechanism to control user access to resources
at the Web-application level. JRun supports this authentication mechanism.

This chapter describes the JRun authentication mechanism and how to apply
authentication constraints to Web applications.

Contents

• Authentication.. 398

• Setting Application Authentication .. 402

• Controlling the Server Authentication Mechanism 410

• Authentication Properties ... 414

398 Developing Applications with JRun
Authentication
Security is an important aspect to any application deployed on the Internet. To
address some of the security issues involved with Internet applications, Version 2.2 of
the Java Servlet API defines an authentication mechanism to control user access to
resources within a Web application. JRun supports the latest security mechanism as
defined in the Java Servlet API.

The authenticating mechanism is role based. That is, all users who access a Web
application are assigned to one or more roles. Example roles are manager, developer,
customer, etc.

Application developers can assign usage roles to a Web application, or to individual
resources that make up the application. Before a user is granted access to a Web
application resource, JRun ensures that the user has been identified (logged in) and
that the user is assigned to a role that has access to the resource. Any unauthorized
access of a Web application results in an HTTP 403 error, unauthorized access.

Authentication requires a Web site to store information about users. This information
includes the role or roles assigned to each user. In addition, Web sites that
authenticate user access typically implement a login mechanism that forces
verification of each user’s identity using a password. Once the Web site has validated
the user, the site can then determine the user’s roles.

Authentication example

The best way to show how the authentication mechanism works is with an example. In
this example, a Web application may only be accessed by a user assigned to the role of
developer.

Chapter 38: Web Application Authentication 399
The following steps describe this mechanism:

1. The user requests a Web application resource. The Web application requires that
requests be authenticated before the application returns a page.

The requirement for authentication is set at the Web application level by the
application developer. Each Web application executed by a JRun server can
individually enable or disable authentication.

2. The application server executing the application traps the request and prompts
the user to log in.

If the user has already logged in, this step is skipped.

3. The user logs in by specifying a user name and password.

4. If the login is invalid, JRun returns an HTTP 401 error (unauthorized access) to the
user.

5. If the user name and password are valid, the application server determines if the
user has the required role to access the application.

6. If the user is not authorized to access the resource, JRun returns an HTTP error
403 (access forbidden) to the user.

7. If the user has the access rights to the application, the application server serves
the requested page.

As you can see in this example, the Web application and the application server
executing the application work together to implement authentication. The application

400 Developing Applications with JRun
specifies if it requires authentication and, if so, the user role required to access the
application. The JRun server recognizes that a Web application requires
authentication and implements the mechanism that validates user access.

Users, groups, and roles

Enforcement of authentication is based on the role or roles assigned to each user. In
order for a user to access a Web application, that user must be assigned to a role that is
authorized to access the application.

You arrange your users in a hierarchy consisting of three entities: users, groups, and
roles. The following figure shows this hierarchy.

As shown in this figure, users can be assigned either to groups or directly to roles.
Groups give you the ability to collect users together so that you can assign an entire
group of users to a particular role.

In this figure, users are arranged into three groups: engineering, employees, and
external. The users and groups are then assigned to specific roles: administrator,
internal, developer, customer, manager, and all.

Chapter 38: Web Application Authentication 401
Application authentication vs. server authentication

Authentication has two distinct pieces, both of which must be implemented for a Web
site to perform application authentication.

The first part of authentication takes place at the application level. Application
developers assign the roles that have access to the application. You can think of this
part of authentication as the definition stage. That is, the application developer defines
the access roles required to access the application. For more information on setting
authentication right for an application, see “Setting Application Authentication” on
page 402.

The second part of authentication is implemented by the application server executing
the application. The application server is responsible for validating a user’s
credentials, typically through a login mechanism, then authenticating the user’s rights
to access a Web application. You can think of this part of authentication as the
enforcement stage. For more information on configuring an application server for
authentication, see “Controlling the Server Authentication Mechanism” on page 410.

These two aspects of authentication are independent from each other. That is, an
application developer does not need to know how the application server executing the
Web application actually performs its authentication; the developer is only concerned
with specifying access rights to it.

When does a server perform authentication?

Authentication occurs on a per-request basis. The JRun server checks every request to
a Web application and authenticates it.

Because a single JRun server can host multiple applications, a user that has access to
one application within a JRun server will also be allowed access to any other
application within that JRun server that has the same access rights.

Configuring the JRun authentication mechanism

You use property files to configure the JRun authentication mechanism; you cannot
control authentication through the JRun Management Console (JMC).

The default settings for the authentication mechanism for all JRun servers associated
with a single installation of JRun are stored in the global.properties file. If you want
to modify the default settings for an individual JRun server, you modify them in the
local.properties file for that server.

The default settings for the JRun authentication mechanism are as follows:

authentication
authentication.service=propfile
authentication.propfile.class=

allaire.jrun.security.PropertyFileAuthentication
authentication.propfile.filename={jrun.rootdir}/lib/users.properties

402 Developing Applications with JRun
These settings define the name of the JRun authentication service as propfile, specify
the name of the Java class defining the authentication mechanism, and specify the
location of the file users.properties. The authentication mechanism implemented
by a JRun server uses users.properties to hold information about users, groups, and
roles. For more information on this file, see “Using the default JRun authentication
mechanism” on page 411.

To disable the JRun authentication mechanism for a JRun server, use the following
setting for the property webapp.properties in local.properties:

Default webapp.services property setting inherited from
global.properties:
webapp.services=scheduler,logging,session,authentication,jsp,file
Modified property to remove authentication
webapp.services=scheduler,logging,session,jsp,file

This property setting removes the service for the JRun authentication mechanism
from the list of JRun services, disabling the JRun server from performing
authentication.

Setting Application Authentication
Authentication requires that the roles defined for a Web application by the application
developer be enforced by the server executing the application. This section describes
how to set the roles, and other authentication information, for the application during
application development.

For more information on configuring how the application server interprets and
enforces this information, see “Controlling the Server Authentication Mechanism” on
page 410.

As part of developing and deploying an application, you must configure the
application’s authentication settings by:

1. Assigning access roles to applications

2. Determining how the application server validates users

Information controlling application authentication is contained in the web.xml file,
the application’s deployment descriptor. To set this information, you must edit
web.xml.

Assigning authentication roles to Web applications

Access to a Web application is controlled by setting the role that a user must have to
access the application or an application resource. That is, for a user to have access to
the application, the user must be assigned to a role that has access to the application.

You can assign access restrictions to the entire application or to any resource within it.
The following excerpt from an application’s web.xml file defines the roles that have
access to the application:

Chapter 38: Web Application Authentication 403
<web-app>
...

<security-constraint>
<web-resource-collection>

<web-resource-name>Store Application</web-resource-name>
<url-pattern>/store/*</url-pattern>
<http-method>GET</http-method>
<http-method>POST</http-method>
<description>Sales Info Resource</description>

</web-resource-collection>
<auth-constraint>

<role-name>manager</role-name>
<description>Managers only</description>

</auth-constraint>
</security-constraint>

...
</web-app>

This example uses the <security-constraint> element to define to define the
following:

• The URL pattern of the Web application resources to which you want to restrict
access.

This example controls the access to all applications resources with the URL
containing /store. To authenticate the entire application, set the URL pattern
to *:

<url-pattern>*</url-pattern>

• The HTTP access method of the application resource is both GET and POST. If
you omit the http-method element, all access methods are authenticated.

• The access role to the URL as manager only.

You can expand the list of roles that can access the application. The next example adds
the role of developer to the roles that can access the web application:

<auth-constraint>
<role-name>manager</role-name>
<role-name>developer</role-name>
<description>Managers and developers</description>

</auth-constraint>

Instead of applying authentication to all resources within an application, you can
selectively assign authentication roles to specific application resources. The following
example assigns authentication to only the servlets in the application’s servlet
directory and to the resources in the application’s pricing directory:

<web-app>
...

<security-constraint>
<web-resource-collection>

<web-resource-name>Store Application</web-resource-name>

404 Developing Applications with JRun
<url-pattern>/store/servlet/*</url-pattern>
<url-pattern>/store/pricing/*</url-pattern>
<http-method>GET</http-method>
<http-method>POST</http-method>
<description>Sales Info Resource</description>

</web-resource-collection>
<auth-constraint>

<role-name>manager</role-name>
<description>Managers only</description>

</auth-constraint>
</security-constraint>

...
</web-app>

The <security-constraint> element has the following syntax:

<security-constraint>
(web-resource-collection+, auth-constraint?, user-data-constraint?)>

</security-constraint>

In this syntax, the + symbols means that you can define one or more web-resource-
collection elements, and the ? means that you can optionally specify auth-
constraint and user-data-constraint elements.

The <web-resource-collection> element has the syntax:

<web-resource-collection>
(web-resource-name, description?, url-pattern*, http-method*)

</web-resource-collection>

You are required to specify a web-resource-name element, and you can optional
specify the description element. The * means that you can specify zero or more url-
pattern and http-method elements.

Note JRun does not support the following authentication elements in web.xml:
user-data-constraint, security-role, and res-auth.

Accessing role information from servlets

From within a servlet, you can access the role name and user name of a client
accessing the servlet. This allows you to conditionalize servlet execution based on the
user’s role or on the user name. For example, a servlet may take one action if the user is
in the role of customer and another if the user is in the role of manager.

Within a servlet, you use methods of the servlet’s HttpServletRequest object (when
developing Java servlets) or the request object (when writing JSP pages) to obtain
information about the user who requested the servlet. These methods include the
following:

• getRemoteUser: Returns the login name of the user making the request if the
user has logged in, or null if the user has not.

• isUserInRole: Returns true if the user is included in the role name passed to
the method.

Chapter 38: Web Application Authentication 405
• getUserPrincipal: Returns a java.security.Principal object containing the
name of the user if the user has logged in, or null if the user has not.

The following example specifies that a user requires either the all or manager
authentication role to the servlet myServlet within a Web application:

<web-app>
...

<servlet>
 <servlet-name>

myServlet
</servlet-name>
<servlet-class>

myServlet
</servlet-class>
<security-role-ref>

<role-name>
all

</role-name>
</security-role-ref>
<security-role-ref>

<role-name>
manager

</role-name>
</security-role-ref>

</servlet>

...
</web-app>

Note This specification does not create an authentication restriction on the
servlet itself; you specify authentication restrictions at the application
level. This specification makes it possible for the servlet to be aware of
any authentication restrictions applied to it.

Within the body of the servlet, you could then determine the user’s role to
conditionalize the servlet, as shown in the following example of a Java servlet:

public void service(HttpServletRequest request,
 HttpServletResponse response) throws IOException
 {

...

if(request.isUserInRole("manager")) {
// Process as manager
}

if(request.isUserInRole("all")) {
// Process as all other users
}

For within a JSP page, you can use the following example to conditionalize the page:

406 Developing Applications with JRun
<%
if(request.isUserInRole("manager")) {
// Process as manager
}

if(request.isUserInRole("all")) {
// Process as all other users
}

%>

Another option with servlets is to have an authentication link in the web.xml definition
of the servlet. The servlet developer can then use one term for role and have that term
linked to the actual role name specified by the application developer. If the application
developer then modifies the roles associated with the application, the JSP developer
then only needs to modify the role link in the web.xml file.

The following example shows the web.xml definition for a servlet using a role link:

<web-app>
...

<servlet>
 <servlet-name>

myServlet
</servlet-name>
<servlet-class>

myServlet
</servlet-class>
<security-role-ref>

<role-name>
MGR

</role-name>
<role-link>

manager
</role-link>

</security-role-ref>
</servlet>

...
</web-app>

In this example, the servlet refers to the manager role as MGR. However, the
<role-link> tag defines a link between the servlet’s MGR role specification and the
manager specification set at the Web application level. This link associates the servlet’s
definition of the role to the application’s definition.

If this application is then modified so that the application authenticates the manager
role using the role name of supervisor, you modify the servlet definition as follows:

<role-name>
MGR

</role-name>
<role-link>

supervisor
</role-link>

Chapter 38: Web Application Authentication 407
With role linking, the servlet always conditionalizes its action based on the role
defined by its <role-name> tag. You can then use that servlet as part of any Web
application by using the <role-link> tag to associate the servlet’s role definitions with
those of the application. Role linking helps to make your servlets portable among
multiple applications.

Setting the user validation method

For an application server to authenticate a user’s access rights to an application, the
server must be able to identify the user. After identifying the user, the server can then
determine the roles to which the user is assigned and, therefore, the user’s access
rights.

When a user first attempts to access a Web application, the application server requires
the user to log in via a user name and password. From this login information, the
server can determine the user’s roles.

Within an application’s web.xml file, you can configure two different validation
methods. These methods determine how the application server queries the user for
login information.

• BASIC: Uses the HTTP challenge/response mechanism to log in a user.

• FORM: Lets application developers display a login form.

Note The Java Servlet API defines four methods for performing user validation.
This release of JRun only supports two: BASIC and FORM.

BASIC validation

BASIC validation uses the HTTP challenge/response mechanism to authenticate the
current user. The sequence of events for this type of validation is as follows:

1. A user who has not logged in attempts to access a Web application.

2. JRun returns an HTTP error 401 (unauthorized access) to the user’s browser.

3. The browser prompts for a user name and password for the given realm. The login
prompt displayed by the browser is as follows:

408 Developing Applications with JRun
4. The browser sends the login information back to the JRun server for
authentication.

If the user name/password is valid, the server then authenticates that the user has
the access rights to the application. If so, the requested page is served; otherwise
JRun returns an HTTP 403 error to the user.

If the user cancels the authentication process, the server returns the HTTP 401
error page.

The figure in “Authentication example” on page 398 also shows this procedure.

To specify that an application uses BASIC authentication, you include the following in
web.xml:

<web-app>
...

<login-config>
<auth-method>

BASIC
</auth-method>
<realm-name>

Sales
</realm-name>

</login-config>

...
</web-app>

If you omit the realm-name property, JRun uses the name of the server hosting the
application as the realm name.

FORM validation

FORM validation allows you to use an HTML form to collect the user name and
password. The following figure shows the steps for FORM validation.

Chapter 38: Web Application Authentication 409
You can specify both a login form and an error form in the web.xml file, as shown in the
following example:

<web-app>
...

<login-config>
<auth-method>

FORM
</auth-method>
<form-login-config>
<form-login-page>

/login.htm
</form-login-page>
<form-error-page>

/loginerror.htm
</form-error-page>
</form-login-config>

</login-config>

...
</web-app>

When a user requests a Web application, the JRun server redirects the user to the page
specified by the <form-login-page> element. The following HTML page, login.htm,
is an example of this login page:

410 Developing Applications with JRun
<html>
<head>
<title>My Login Page</title>
</head>
<body>
<center>
<h2>You have requested a secured page. Please login.</h2>

<form method="POST" action="j_security_check">
<table>
<tr><td>User</td><td><input type=text name="j_username"></tr>
<tr><td>Password</td><td><input type=password name="j_password"></tr>
</table>

<input type=submit>
</form>

</center>
</body>
</html>

The form that you use must contain the following settings:

• Action: The form must be submitted (POST only) using an action of
j_security_check. The server executing the application recognizes this action
and processes the form.

• User name: The user name must be stored in a field named j_username.

• Password: The password must be stored in a field named j_password.

If the user name/password is valid, the JRun then authenticates that the user has the
access rights to the application. If so, the requested page is served; otherwise the
otherwise JRun returns an HTTP 403 error to the user. If user name or password is
invalid, JRun redirects the user to the page specified by <form-error-page> tag.

Controlling the Server Authentication Mechanism
This section describes how to configure the authentication mechanism of the
application server executing a Web application. You have three choices for selecting
the authentication mechanism, based on the server used to execute it:

• JRun application server using the default JRun authentication mechanism

Use JRun to execute your Web application. By default, a JRun application server
uses the authentication mechanism supplied with JRun. For more information,
see “Using the default JRun authentication mechanism” on page 411.

• JRun application server using a custom authentication mechanism

Use JRun to execute your Web application but define your own authentication
mechanism. This method is often necessary when you have an existing user
database, possibly containing group and role information, that you want to use

Chapter 38: Web Application Authentication 411
to authenticate user access to an application. For more information, see “Using
a custom authentication mechanism with JRun” on page 413.

• Other application server using its own authentication mechanism

JRun subscribes to the latest industry-standard specification (Java Servlet
Specification Version 2.2) for Web application authentication. Thus any
application that you develop within JRun is transportable to any other Web
application environment that subscribes to this specification.

If you want to execute a Web application on a different application server, the
server that you use to execute your application defines its own authentication
mechanism. For more information, see “Executing applications outside of
JRun” on page 414.

Using the default JRun authentication mechanism

A JRun server provides a built-in mechanism for performing authentication for the
Web application executed by the server. This authentication mechanism uses a single
file to record information about users, groups, and roles. When a user attempts to
access an application, the JRun server determines the user’s role, then determines if
that role has access to the application.

The default JRun authentication mechanism is defined by the following settings in the
global.properties file:

authentication
authentication.service=propfile
authentication.propfile.class=

allaire.jrun.security.PropertyFileAuthentication
authentication.propfile.filename={jrun.rootdir}/lib/users.properties

The authentication.service property specifies the name of the authentication
service as propfile. The remaining properties set the name of the Java class defining
the authentication mechanism, and set the location of the users.properties file. The
authentication mechanism implemented by a JRun server uses users.properties to
hold information about users, groups, and roles.

For the built-in JRun authentication mechanism, all JRun servers share a single
users.properties file containing user, group, and role information. Therefore, all
applications share the same user authentication information.

Note You can configure an individual JRun server to use its own file to contain
user information for that server only. To do so, edit the
local.properties file for the server by adding the property
authentication.propfile.filename that specifies the location of the
users.properties file. For more information on this property, see
“Properties in local.properties” on page 414.

The users.properties file is a simple text file that you can edit to add users, groups,
and roles. The syntax for this file is the same as for a JRun property file. For more
information on property-file syntax, see the JRun Setup Guide.

412 Developing Applications with JRun
The following example users.properties file defines five users, two groups, and three
roles:

Define users
Passwords are encrypted using UNIX password encryption
user.admin=adpexzg3FUZAk
user.ajones=kmBt0v90ZbRE6
user.bsmith=bs.e1isDZSIX.
user.csmith=cszOt89s3eWaU
user.user1=swJBBnSJUNwbQ

#Define groups
group.jrundeveloper=ajones,bsmith,user1
group.all=*

#Assign users and groups to roles
role.developer=jrundeveloper
role.manager=csmith
role.users=*

User names are in the following form:

user.userName=UnixCryptPassword

userName defines the name of the user. UnixCryptPassword is the encrypted form of
the user’s password.

The wildcard character (*) in this example enables you to assign all users to the group
all and all groups to the role users.

When you add a new user to a Web site, you must also update users.properties to
add the user and the user’s encrypted password, and to add the user to the applicable
groups and roles. You can add users programmatically from within your application,
or you can use JRun’s command line utility.

The command-line utility allows you to add users and encrypted passwords to the
users.properties file. However, you must still modify users.properties to add
users to roles and groups.

The invocation command for this utility depends on whether you execute it on a
Windows or UNIX system.

Windows:

You must make sure that the files <JRun home dir>/lib/jrun.jar and <JRun home
dir>/lib/ext/servlet.jar are included in your system’s CLASSPATH environment
variable. You then invoke this utility using the following command from a Windows
command prompt:

java allaire.jrun.security.PropertyFileAuthentication options

UNIX:

JRun supplies a shell script for invoking this utility on UNIX using the following syntax:

jrunpasswd options

For both Windows and UNIX, you can use the following options with this command:

Chapter 38: Web Application Authentication 413
command [-verbose] -convert <users.properties file> <pass.properties file>
command [-verbose] -add <users.properties file> <username> <password>
command [-verbose] -edit <users.properties file> <username> <password>
command [-verbose] -remove <users.properties file> <username>

In this command, you enter a plan-text version of the user’s password. The utility
encrypts it and writes it to the users.properties file. Use the form of the command
that takes a as input a pass.properties file to copy the usernames and passwords
from a JRun 2.3.3 pass.properties file to a users.properties file.

For example, the following command adds the user Bob and Bob’s encrypted
password to users.properties on a UNIX system:

jrunpasswd -add /usr/local/jrun/lib/users.properties Bob Bobpassword
User Bob added

Using a custom authentication mechanism with JRun

The default JRun authentication mechanism described in the previous section may
not be suitable for your Web site. For example, you may already have a mechanism for
storing information about users, such as an LDAP database, that you want to
incorporate into application authentication.

In this case, you can define your own authentication mechanism by implementing the
JRun interface allaire.jrun.security.AuthenticationInterface. This interface
defines the methods of the JRun authentication mechanism. By implementing this
interface, you can implement your own authentication mechanism. The following
table lists the methods of this interface:

See the javadocs in the directory {JRun root dir}/docs for information on this class.

Once you have defined your authentication interface, you then specify that interface to
JRun using the authentication.serviceName.class property in local.properties
for the JRun server.

Methods of Authentication Interface

Method Purpose

authenticate Authenticate the user with the given credentials (such as a
password).

destroy Destroy the authentication service.

init Initialize the authentication service.

isPrincipalInRole Determines if the principal (user) has been granted a role within
an authentication realm. Returns a Principal object which can
be used to obtain the user name.

414 Developing Applications with JRun
The following example specifies a custom authentication mechanism for use by a JRun
server:

authentication
authentication.service=myauth
authentication.myauth.class=classFileName

Executing applications outside of JRun

JRun adheres to the latest industry-standard specification (Java Servlet Specification
Version 2.2) for Web application authentication. Any application that you develop
within JRun is transportable any other Web application environment that subscribes
to this specification.

Web applications define the roles that users must have in order to access the
application. However, the application server executing the application must interpret
and enforce role information.

Therefore, any Web application created within JRun should be transportable to
another execution environment as long as that environment’s authentication
mechanism is configured to recognize the roles referenced by the application.

Authentication Properties
This section describes the properties that control the JRun authentication mechanism.

Properties in local.properties

The local.properties file contains several properties that you use to control the
authentication when executing an application within a JRun server. Each JRun server
has its own local.properties file.

The properties described in this section have the following format:

authentication.propertyName = propertyValue
authentication.<ServiceName>.propertyName = propertyValue

where ServiceName is the logical name of your authentication service as set by
authentication.service.

authentication.service

Specifies the name of the authentication service. This name is used as a key to
determine the class name and other configuration properties (such as the
users.properties location) in the property file.

The default service name is propfile.

Chapter 38: Web Application Authentication 415
authentication.<ServiceName>.class

Specifies the name of the authentication class. By default, this property is set to
allaire.jrun.security.PropertyFileAuthentication.

However, you can create your own custom authentication mechanism by
implementing the allaire.jrun.security.AuthenticationInterface
interface. If you do define your own authentication mechanism, specify your
custom class here.

authentication.<ServiceName>.filename

Specifies the name of the data file containing authentication information. This file
contains information about the users, groups, and roles.

The default value is {jrun.rootdir}/lib/users.properties. This pathname
corresponds to the lib directory under your JRun installation directory.

Properties in users.properties

By default, the JRun authentication mechanism uses information about users, groups,
and roles defined in the users.properties file. This section describes the properties
in the users.properties file.

You can use the JRun Management Console (JMC) to add new users to
users.properties. For more information, see “Using the default JRun authentication
mechanism” on page 411.

user.userName

Specifies the name and password of a user. This property has the following
format:

user.userName=UnixCryptPassword

userName defines the name of the user. UnixCryptPassword is the encrypted form
of the user’s password. The authentication mechanism uses this information to
validate a user before granting access to a Web resource.

Here is an example of user definitions in users.properties:

user.admin=adpexzg3FUZAk
user.ajones=kmBt0v90ZbRE6
user.bsmith=bs.e1isDZSIX.
user.csmith=cszOt89s3eWaU
user.user1=swJBBnSJUNwbQ

You can use wildcards characters in both userName and UnixCryptPassword. For
example, the following statement allows the user developer to be authenticated
with any password:

user.developer=*

Caution This example shows the plain text form of * as the password. Do
not insert the * character as the password in the

416 Developing Applications with JRun
users.properties file. Instead, you must insert the UNIX
encrypted form of *.

The next example allows any user to be authenticated with the password jrun:

user.*=jrun

As in the previous example, do not insert the plain text jrun as the password in
the users.properties file. Instead, insert the UNIX encrypted form of jrun.

This example allows any user to be authenticated with any password:

user.*=*

group.groupName

Specifies a list of users assigned to a specific group. Groups allow you to collect
users together to control authorization for the entire group. This property has the
following format:

group.groupName=memberList

groupName specifies the name of the group and memberList specifies a comma-
separated list of users within the group. You can use wildcard characters to add all
users to a single group. Note that you cannot make a group a member of another
group.

The following example creates two groups:

group.jrundeveloper=ajones,bsmith,user1
group.all=*

role.roleName

Specifies a role name and a list of users or groups in that role. This property has
the following format:

role.roleName=memberList

roleName specifies the name of the role and memberList specifies a comma-
separated list of users and groups in that role. You can use wildcard characters to
add all users and groups to a single role.

The following example creates three roles:

role.developer=jrundeveloper
role.manager=bsmith
role.user=*

Users and groups can have the same name. If so, you can prefix them with either
user or group in the member list of a role. The following example adds both a user
and a group named jrundeveloper to a role:

role.developer=user.jrundeveloper, group.jrundeveloper

If you omit either the user or group prefix, JRun resolves the duplicate user and
group names by first searching the list of users for the name, than the list of
groups. Therefore, if a user and a group have the same name, and you omit the
user or group prefix, JRun will always resolve the name to a user name.

C H A P T E R 3 9
Chapter 39 JRun Instrumentation
Instrumentation allows you to record the execution time for the methods of a servlet.
These execution times can help you to identify bottlenecks in your application.

This chapter describes the JRun instrumentation mechanism.

Contents

• Using the Instrumentation Mechanism ... 418

• Instrumentation Properties... 425

418 Developing Applications with JRun
Using the Instrumentation Mechanism
When optimizing an application, you identify the key areas in your application that
require the largest percentage of execution time. By optimizing only a few of the most
severe bottlenecks, you can often realize a large improvement in overall application
performance.

JRun supplies an instrumentation mechanism for you to measure performance of
individual method calls within a servlet. Using the instrumentation mechanism, you
can measure execution times for servlet methods that you create as well as for the
methods of third-party library and helper classes.

The JRun instrumentation mechanism has many important features that make it
useful when performing performance analysis of your application, including the
following:

• Low overhead

The instrumentation mechanism works with the JRun logging mechanism so
that recording timing information takes little processing time away from the
application itself.

• No modification to source code required

You control the instrumentation mechanism through the JRun property files,
not by editing or modifying your source code. Because the instrumentation
mechanism requires no source code changes, you do not need to recompile
your applications to add or remove the instrumentation functionality.

• Flexibility

You can enable or disable instrumentation for all servlet classes within an
application, for individual classes, or for individual methods of a class.

• Works with your servlets and third-party components

The instrumentation mechanism works not only with servlets that you develop
with JRun but also with all classes and libraries that you include in an
application. For example, if your application requires the use of methods from
the java.sql library, you can perform instrumentation on those methods as
well as on the methods of any servlet that you develop.

Example

This section contains an example of the JRun instrumentation mechanism. This
example uses the following class definition:

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class HelloWorld extends HttpServlet
{

public void doGet(HttpServletRequest request, // level 1
HttpServletResponse response) throws IOException

Chapter 39: JRun Instrumentation 419
{
response.setContentType("text/html"); // level 2
PrintWriter out = response.getWriter();
out.println("<html><head><title>Hello</title></head><body>");
out.println("Hello World");
out.println("</body></html>");

}

The JRun instrumentation mechanism enables you to selectively perform timing
analysis on the individual methods of the class, in this example doGet(), and on the
methods called by doGet(). In this class definition, the doGet() method is labelled as
level 1, and the methods called by doGet() are labelled level 2.

The instrumentation mechanism only allows you to control method calls to two levels.
If the method servRes.setContentType calls additional methods, you cannot
instrument those methods.

For each method that you instrument, JRun writes two messages to the output
destination. The first message contains the start time of the method, as well as other
information. The second message contains the end time and elapsed time of the
method, measured in milliseconds. For a complete description of the message format,
see “Message format” on page 419.

The following two timing messages are generated for the doGet method.

11/15 03:41:50 info ENTER,HelloWorld,-100030151,doGet,
(Ljavax/servlet/http/HttpServletRequest;Ljavax/servlet/http/HttpServletR
esponse;)V

11/15 03:41:50 info EXIT,HelloWorld,-100030151,doGet,
(Ljavax/servlet/http/HttpServletRequest;Ljavax/servlet/http/HttpServletR
esponse;)V,3

The last component of the second message, the EXIT message, is the method duration
in milliseconds.

By default, the instrumentation mechanism writes its output as a stream of messages
to the log file for the JRun server executing the servlet. For example, if you use the
default JRun server to execute HelloWorld, the output is written to the log file for that
server. You can configure the instrumentation mechanism to use a different message
destination. For more information, see “Logging properties” on page 426.

Message format

Here is an example output message from the instrumentation mechanism for the
doGet method of the SnoopServlet servlet:

11/15 03:41:50 info EXIT,SnoopServlet,-100030151,doGet,
(Ljavax/servlet/http/HttpServletRequest;Ljavax/servlet/http/HttpServletR
esponse;)V,3

The doGet method is a first-level method, meaning it is defined by the SnoopServlet
class. The message format for a first-level method call contains the following
components:

420 Developing Applications with JRun
currentTimeMillis loglevel type,className,hashCode,methodName,
methodType,elapsed

where:

• currentTimeMillis: The date and time of the message. Time is recorded to
milliseconds. Note that no comma is inserted after currentTimeMillis.

• loglevel: When configuring the instrumentation mechanism, you can specify
the log level of the timing messages as either info, warning, error, or debug.
Note that no comma is inserted after loglevel.

• type: A string to signify method entrance and exit.

• className: The class name of the method.

• hashCode: The hash code of the method.

The hash code is a unique object reference that is useful in a multi-threaded
environment. If two threads are working on the same servlet at the same time,
the method timings will be interleaved; therefore, the hash code will allow you
to differentiate the messages.

• methodName: The name of the method.

• methodType: The signature of the method. Included in the methodType is the
return type, such as V for void.

• elapsed: The elapsed time of the method call (for method exits only)

A second-level method call is any method called directly by a servlet class method. The
message format for a second-level method call contains all of the components of a
first-level method, plus the following additional components:

currentTimeMillis loglevel type,className hashCode,methodName,
methodType,callClassName,callMethodName,callMethodType,line,elapsed

where:

• callClassName: The class name of a second-level method.

• callMethodName: The name of a second-level method.

• callMethodType: The signature of a second-level method.

• line: The line number of a level 2 call from a servlet method. Line numbers are
not included for servlet methods because the method name is enough
information to associate a timing message with a method.

Using logging with instrumentation

The JRun instrumentation mechanism relies on the JRun logging mechanism to
handle the messages that it generates. Therefore, one step in configuring the
instrumentation mechanism requires you to set properties associated with a logger.

For more information on logging, see Chapter 37.

Chapter 39: JRun Instrumentation 421
Configuring

You configure the instrumentation mechanism using the JRun property files.
Typically, you edit local.properties for the JRun server containing the Web
application that you want to instrument.

The following properties show an example for the instrumentation mechanism. These
settings were used to generate the instrumentation messages shown in “Example” on
page 418.

Enable instrumentation.
timing.enabled=true

Specify methods to exclude and include in instrumentation
of all servlets.
timing.excludecalls=java.*,javax.*,sun.*,org.omg.CORBA.*
timing.includecalls=java.sql.*

Define the logger used to process messages.
By default, messages are written to the log file for the
JRun server executing the servlet.
These properties control the message format.

Define the logger name.
timing.logging.class=simplelogger

Specify the class file for the logger.
timing.simplelogger.class=allaire.jrun.methodTimer.SimpleLogger
Set the logging message type. Options are info, warning, error, debug.
timing.simplelogger.level=info
Set the type field of the generated message for level 1 methods.
timing.simplelogger.entermethod=ENTER
timing.simplelogger.exitmethod=EXIT
Set the type field of the generated message for level 2 methods.
timing.simplelogger.beforemethodcall=CALLENTER
timing.simplelogger.aftermethodcall=CALLEXIT
Set the delimiter for timing message components.
timing.simplelogger.delimeter=,

Specify the servlet to instrument and define the first and second level
methods to time. This example instruments the doGet and doPost methods,
and all second level calls of doGet.
timing.classes=hWorld
timing.hWorld.class=HelloWorld
First level methods
timing.hWorld.methods=doGet,doPost
Second level methods for all methds
timing.hWorld.calls=javax.servlet.http.*
Second level methods for doGet only
timing.hWorld.doGet.calls=*

422 Developing Applications with JRun
Writing instrumentation information back to the client.

By default, the instrumentation mechanism records the execution time for the
methods of a servlet in a JRun log file. You can also display that information back to the
client, meaning back to the Web user who made the request to the servlet.

Use the following procedure to redirect instrumentation information to a client:

1. In your server’s local.properties file, set the following property:

timing.logging.class=threadlogger

2. Optionally enable instrumentation by setting the timing.enabled property to
true in your server’s local.properties file:

timing.enabled=true

If you do not enable this option, the only information returned to the client is the
total execution time of the servlet.

3. Use the servlet JRunStats to display statistics about a request.

To use the servlet JRunStats, you can either:

• Use it in a servlet chain (either explicitly or via MIME types). For example, the
following URL chains the JRunStats servlet with the SnoopServlet:

http://localhost/servlet/SnoopServlet,JRunStats

• Use the request dispatcher in a Java servlet:

RequestDispatcher rd=req.getRequestDispatcher("/servlet/JRunStats");
rd.include(req, resp);

If you enable instrumentation by setting the property timing.enabled to true, the
output information sent back to the client includes the total servlet execution time
plus:

• Total ms: Duration of a method call in milliseconds.

• Hits: Number of times a method was called within the servlet.

• Class.Method: Name of the servlet class or method making the method call.

• Called Class.Method: Name of the called method, or empty if the statistics are
for the method Class.Method.

• Line - Source line number inClass.Method where the call is made, or empty if
the statistics are for the method Class.Method.

The following figure shows an example output of the instrumentation information for
the servlet SnoopServlet which is supplied with JRun. The URL for this example is:

http://localhost/servlet/SnoopServlet,JRunStats

Chapter 39: JRun Instrumentation 423
In this example, the first line of information is for the method call
SnoopServlet.service. Because the timing information is for this method, not for a
method called by SnoopServlet.service, the Called Class.Method and Line fields
are blank.

The third line of information is for the JRunDemoServlet.generateDemoPageStart
method which is called by SnoopServlet.service.

Writing timing messages to its own file

By default, JRun writes instrumentation messages to the log file of the JRun server
executing the servlet. You can also configure JRun to write these messages to a
separate file.

Enable instrumentation.
timing.enabled=true

Specify methods to exclude and include in instrumentation
of all servlets.
timing.excludecalls=java.*,javax.*,sun.*,org.omg.CORBA.*
timing.includecalls=java.sql.*

Setup the logging groups
logging.groups=instrumentLog

Setup the instrumentLog logging group and the named logger
logging.groups.instrumentLog.timingNamedLogger=info
logging.groups.instrumentLog.listeners=instLogThreadLog

logging.instLogThreadLog.class=allaire.jrun.logging.ThreadedLogger
logging.instLogThreadLog.listeners=fileInstrumentWriter

Define the file writer. This file writer writes all events
to the same file.
logging.fileInstrumentWriter.class = allaire.jrun.logging.FileLogWriter

424 Developing Applications with JRun
logging.fileInstrumentWriter.filename = {jrun.roodir}/logs/timing.log
logging.fileInstrumentWriter.rotationsize = 100000
logging.fileInstrumentWriter.rotationfiles = 3

Define the logger name.
timing.logging.class=simplelogger

Specify the class file for the logger.
timing.simplelogger.class=allaire.jrun.methodTimer.SimpleLogger
timing.simplelogger.level=info
timing.simplelogger.entermethod=ENTER
timing.simplelogger.exitmethod=EXIT
timing.simplelogger.beforemethodcall=CALLENTER
timing.simplelogger.aftermethodcall=CALLEXIT
timing.simplelogger.delimeter=,
timing.simplelogger.loggername=timingNamedLogger

Specify the servlet to instrument and define the first and second level
methods to time. This example instruments the doGet and doPost methods,
and all second level calls of doGet.
timing.classes=hWorld
timing.hWorld.class=HelloWorld
timing.hWorld.methods=doGet,doPost
timing.hWorld.calls=javax.servlet.http.*
timing.hWorld.doGet.calls=*

Instrumenting JSP files

This example writes execution times for JSP pages back to the client. You can modify
this example to write the information to a JRun log file.

Use the following procedure to write JSP instrumentation information to a client:

1. In your server’s local.properties file, set the following property:

timing.logging.class=threadlogger

2. Enable instrumentation by setting the timing.enabled property to true in your
server’s local.properties file:

timing.enabled=true

If you do not enable this option, the only information returned to the client is the
total execution time of the servlet.

3. Set the JSP method timing attributes.

timing.jsp.class=allaire.jrun.jsp.HttpJSPServlet
 timing.jsp.subclasses=true
 timing.jsp.methods=*
 timing.jsp.calls=*,javax.servlet.*

These settings specify that all classes having a direct superclass of
HttpJSPServlet will be instrumented. All methods will be instrumented, as well
as all calls within the methods, including javax.servlet.* calls which excluded
are by default.

Chapter 39: JRun Instrumentation 425
4. Update the list of classes to instrument by appending jsp to the list:

timing.classes=HttpServlet,SnoopServlet,jsp

5. Restart your JRun server.

6. Use the servlet JRunStats to display statistics about a request as shown in the
section “Writing instrumentation information back to the client.” on page 422.

Instrumentation Properties
You use three types of properties to control the instrumentation mechanism:

• General properties

• Logging properties

• Class and method properties

The following sections describe these properties.

General properties

This section describes the general properties that you use to configure and enable the
JRun instrumentation mechanism. These properties have the following format:

timing.propertyName = propertyValue

timing.enabled

Specifies to enable or disable method timing. The default value is true to enable
timing. Setting this property to false disables timing.

timing.excludecalls

Specifies a comma-separated list of methods to exclude from timing. You can
include wildcard characters to specify multiple calls.

A common use of this property is to exclude calls to Java libraries. For example:

timing.excludecalls=java.*,javax.*,sun.*,org.omg.CORBA.*

timing.includecalls

Specifies a comma-separated list of the calls to instrument. You can include
wildcard characters to specify multiple calls. This property overrides any
conflicting settings in timing.excludecalls.

For example, you can combine this property with timing.excludecalls, as
follows:

timing.excludecalls=java.*,javax.*,sun.*,org.omg.CORBA.*
timing.includecalls=java.sql.*

426 Developing Applications with JRun
In this example, timing.excludecalls specifies not to instrument java.*
methods. However, you use timing.includecalls to override this setting to
instrument java.sql.* methods.

Logging properties

This section describes the properties that you use to control the logger associated with
the instrumentation mechanism. These properties have the following format:

timing.propertyName = propertyValue
timing.<ClassName>.propertyName = propertyValue

timing.logging.class

Specifies the name of the logger that receives the method timing output. You then
define the following group of properties specifying the format of the timing
messages written to the logger.

• timing.<LoggerName>.class

• timing.<LoggerName>.level

• timing.<LoggerName>.entermethod

• timing.<LoggerName>.exitmethod

• timing.<LoggerName>.beformethodcall

• timing.<LoggerName>.aftermethodcall

• timing.<LoggerName>.delimiter

For example, the following properties set the instrumentation parameters for the
logger exampleLogger:

Define the logger name.
timing.logging.class=exampleLogger

Specify the class file for the logger.
timing.exampleLogger.class=allaire.jrun.methodTimer.SimpleLogger
timing.exampleLogger.level=info
timing.exampleLogger.entermethod=ENTER
timing.exampleLogger.exitmethod=EXIT
timing.exampleLogger.beforemethodcall=CALLENTER
timing.exampleLogger.aftermethodcall=CALLEXIT
timing.exampleLogger.delimeter=,

timing.<LoggerName>.class

Specifies the logger class. You typically use the class
allaire.jrun.methodTimer.SimpleLogger. This class defines the format of the
timing message and routes it to a logging system.

Chapter 39: JRun Instrumentation 427
timing.<LoggerName>.level

Specifies the log event type for method timings. Possible values are: debug, error,
warning, and info. The default value is info.

The JRun logging mechanism can filter timing messages based on the message
level. For more information, see Chapter 37.

timing.<LoggerName>.entermethod

Specifies the text included in the timing message when entering a level 1 method.

timing.<LoggerName>.exitmethod

Specifies the text included in the timing message when exiting a level 1 method.

timing.<LoggerName>.beforemethodcall

Specifies the text included in the timing message when entering a level 2 method.

timing.<LoggerName>.aftermethodcall

Specifies the text included in the timing message when exiting a level 2 method.

timing.<LoggerName>.delimeter

Specifies the delimiter used between the components of the method timing
message. The default delimiter is a space.

Class and method properties

This section describes the general properties that you use to control the classes and
methods on which JRun performs instrumentation. These properties have the
following format:

timing.propertyName = propertyValue
timing.<ClassName>.propertyName = propertyValue

timing.classes

Specifies a comma-separated list of classes to time. For each specified class, you
define the following group of properties specifying the class methods to time:

• timing.<ClassName>.class

• timing.<ClassName>.methods

• timing.<ClassName>.calls

• timing.<ClassName>.<MethodName>.calls

• timing.<ClassName>.subclasses

428 Developing Applications with JRun
For example, the following properties set the instrumentation parameters for the
servlet SnoopServlet:

Specify the servlet to instrument
and define the first and second level methods to time.
timing.classes=Snoop

timing.Snoop.class=SnoopServlet
timing.Snoop.methods=doGet,doPost
timing.Snoop.calls=javax.servlet.http.*
timing.Snoop.doGet.calls=*

timing.<ClassName>.class

Specifies the full package class name of the class that you want to instrument.

timing.<ClassName>.methods

Specifies a comma-separated list of the level 1 methods of <ClassName> to time.
You can include wildcard characters in the name to specify multiple methods.

timing.<ClassName>.calls

Optionally specifies a comma-separated list of level 2 methods to instrument that
are called from within a method specified by timing.<ClassName>.methods.

You can include wildcard characters in the name to specify multiple methods.

timing.<ClassName>.<MethodName>.calls

For each MethodName specified by timing.<ClassName>.methods, you can specify
a comma-separated list of level 2 method calls to time. You can include wildcard
characters in the name to specify multiple methods.

timing.<ClassName>.subclasses

Specifies to instrument any direct subclasses of <ClassName> or classes that
implement the <ClassName> interface directly.

C H A P T E R 4 0
Chapter 40 Debugging and Error
Messaging
A common task during the development of any application is debugging. This
chapter describes some of the most common debugging techniques for JRun
applications.

In addition, JRun has several built-in error messaging mechanisms that you may
want to override. This override allows you to replace JRun error messages with your
own. Contained in this chapter is information on using your own error messages to
replace those generated by JRun.

Finally, this chapter contains information on how to develop JRun applications with
a third-party IDE such as J++ or Visual Café.

Contents

• Debugging... 430

• Custom Error Messaging ... 439

• Using JRun with a Third-Party IDE ... 441

430 Developing Applications with JRun
Debugging
This section describes some common tasks and techniques that you can use to debug
Web applications developed using JRun. Included are the following sections:

• “Starting a debugger with JRun” on page 430

• “Obtaining a stack trace” on page 430

• “Handling a core dump (UNIX systems only)” on page 432

• “Handling an out of memory error” on page 433

• “Monitoring client/server communication” on page 434

• “Additional debugging links” on page 438

Starting a debugger with JRun

One of the most basic actions of debugging a JRun application is to start JRun under
the control of the Java debugger command jdb. Once you have started JRun under jdb,
you can set breakpoints, single step, obtain information about threads, examine
memory usage, and perform many other debugging actions.

To use the jdb command to invoke JRun, you need to add the following files to your
system’s CLASSPATH environment variable:

• All .jar files in the directory <JRun home dir>\lib

• All .jar files in the directory <JRun home dir>\lib\ext

You use the following command to start the JRun server default under jdb on
Windows:

jdb JRun c:\progra~1\Allaire\JRun\servers\default

The abbreviation progra~1 is necessary because the jdb utility may not be able to
interpret the space in the Windows directory name "program files." On a UNIX
machine, use the path to the JRun server that you want to start.

Obtaining a stack trace

One useful device in debugging an application is to obtain a stack trace. A Java stack
trace contains information on the threads and monitors in a JVM. In fact, as part of
resolving customer issues, Allaire customer support often asks customers to generate a
stack trace and email it to Allaire for review.

One common use of a stack trace is to determine the cause of a deadlock condition. In
order to handle a high number of concurrent requests, JRun uses a multithreaded
model. In a multithreaded environment, access to certain resources is controlled via
locks so that only one thread can utilize the resource at any one time. Sometimes a
condition can occur where one thread is waiting to acquire a resource from a second
thread which, in turn, is waiting for a resource from the first thread. This situation is
called a deadlock.

Chapter 40: Debugging and Error Messaging 431
For example, the following is an excerpt from a stack trace that contains a deadlock:

t@37 waiting to lock
object@0xdbdf15c8:"oracle/jdbc/driver/OracleCallableStatement" which is
locked by t@529
t@529 waiting to lock
object@0xdc030470:"oracle/jdbc/driver/OracleConnection" which is locked
by t@37

As you can see, threads 37 and 529 are both waiting for the other thread to free a
resource. Since both threads are waiting, neither thread is able to free the resource
required by the other thread. In this situation, both threads will wait indefinitely.

The following sections describe how to obtain a stack trace for the operating systems
supported by JRun.

Allaire has developed a Knowledge Base article on interpreting the contents of a Java
stack trace. You can access this article, Knowledge Base article 12406, at the following
URL:

http://allaire.com/Support/KnowledgeBase/SearchForm.cfm.

Windows stack trace

Use the following procedure to obtain a stack trace from JRun on a Windows system
using a Sun or IBM JVM:

1. Make sure you are using java.exe as your Java executable to run JRun, not
javaw.exe. The javaw.exe executable runs a Java application without opening a
DOS window, while java.exe opens a DOS window when you start a JRun server.

In the JMC, use the server-name > Java Settings > Java Executable property
to set java.exe, where server-name is the name of a JRun server.

2. Start the JRun server.

An empty DOS window opens.

3. With the DOS window active, use the key combination Ctrl-Break to force a stack
trace to be written to the file {JRun home dir}/logs/servername-err.log.

Note The property java.System.err defines the name of this file. You can
modify this property in the local.properties file for a JRun server
to change the file name. For more information on this property, see
Chapter 40.

Alternatively, you can click on the close box in the DOS window to cause the stack
trace (the X icon in the upper right corner of the DOS window). The DOS window
will not close. However, a pop-up window will appear stating that:

The Windows application cannot respond to the End Task request.

Selecting End Task will stop JRun; Cancel allows JRun to keep running.

4. Open Notepad, Wordpad, or another text editor to read the stack trace
information in the file {JRun home dir}/logs/servername-err.log.

432 Developing Applications with JRun
UNIX/Solaris stack trace

On UNIX and Solaris, JRun by default defines a file named JRun/logs/{server}-
err.log that will hold a stack trace where {server} is the name of a JRun server.

Use the following procedure to obtain a stack trace:

1. Determine the process ID number of the jrun process using the top command or
use the grep command on the output of the ps -ef command. The following
example uses the grep and ps commands:

ps -ef | grep jrun

2. Send a quit signal to the jrun process ID using either the kill -QUIT or kill -3
command. For example:

kill -3 jrunID

On some UNIX/Solaris platforms, depending on your JDK, Java stack traces may
be sent directly to the monitor or terminal window from which you started the
Java process. You do not have a chance to redirect the output of a stack trace to a
file or other destination. All you can do is dump the trace to the monitor or
window, then copy and paste it into another terminal window that’s running an
editor such as vi or Emacs.

Linux

To obtain a stack trace on a Linux system using the Sun/Blackdown JVM, use the
procedure described in the section “UNIX/Solaris stack trace” on page 432.

The IBM JVM responds to a kill -QUIT or kill -3 by creating a javacore.txt file in
the root directory of the JRun server that was given the QUIT signal. For example, for
the default JRun server, this directory defaults to /opt/JRun/servers/default.

Use the following procedure to obtain a stack trace:

1. Determine the process ID number of the jrun process using the top command or
use the grep command on the output of the ps -ef command. The following
example uses the grep and ps commands:

ps -ef | grep jrun

2. Send a quit signal to the jrun process ID using either the kill -QUIT or kill -3
command. For example:

kill -3 jrunID

Handling a core dump (UNIX systems only)

When an application causes a core dump, the operating system writes a core file to the
directory from which you started the application.

Note Core dumps occur on UNIX systems only; they do not occur under
Windows.

Chapter 40: Debugging and Error Messaging 433
Because JRun is written in Java, JRun always throws a Java exception when
encountering an error and will never cause a core dump by itself. Core dumps
involving JRun are typically caused by the JVM or the application itself for the
following reasons:

1. You JVM has a bug. Typically this occurs when the JVM interfaces with the
operating system. A bug in the JVM can cause a core dump.

2. Your JRun application uses native code, typically through the Java Native
Interface (JNI), that has an error. For example, you use a type 1 JDBC driver that
calls an ODBC driver to access a database, but the native code in the driver is not
thread safe so it deadlocks and dumps the core.

Allaire has developed a Knowledge Base article on core dumps. You can access this
article, Knowledge Base article 15437, at the following URL:

http://allaire.com/Support/KnowledgeBase/SearchForm.cfm.

Handling an out of memory error

Each instance of a JVM uses an allocation of memory for all objects shared among all
its threads called the heap. At runtime, the JVM allocates memory for all class
instances and arrays from the heap. If your servlets or JSP pages cause the error
message java.lang.OutOfMemoryError in a JRun log file or in a stack trace, then you
probably need to increase your JVM’s maximum heap size.

Note You should not try to catch an OutOfMemoryError in your application.
These errors are not generally predictable and when they do happen
there is nothing that you can do to recover because by then the JVM is
out of memory and the garbage collector is unable to free any memory
for further processing.

An OutOfMemoryError can also be caused by programming errors such as an infinite
loop that allocates memory for new objects. This type of programming error will cause
an OutOfMemoryError regardless of the amount of memory that you allocate for a JVM.

The default heap size is dependent on the JVM. However, most JVMs do allow you to
modify the heap’s minimum and maximum size and most provide a default value for
these settings. The following list describes the most common heap settings for both
Sun and IBM JVMs. Most JVM vendors follow the Sun rules for default values of heap
size.

• Sun’s Windows and Solaris Version 1.1 JVMs

Default maximum heap size of 16 MB. This default size small for most server-
side Java applications. The default minimum heap size is 1 MB.

• Sun’s Windows and Solaris Version 1.2 and 1.3 JVMs

Default maximum heap size of 64 MB and a default minimum heap size of 1
MB. While the default maximum may be sufficient, Allaire has determined that
most enterprise level server-side Java applications require a higher setting.

434 Developing Applications with JRun
The setting you choose should be determined by testing and trial and error. It is
highly application and load dependent.

• IBM Version 1.1.8 JVM

The default heap size is one half of the total physical memory size.

To increase your maximum heap size:

1. In the JMC, use the server-name > JVM Settings > Java Arguments property
set the heap size.

• For example, for a 1.1 JDK you can insert the following argument to set the heap
size to 64 MegaBytes:

-mx64m

• For a 1.2 JDK, you can insert the following argument to set the heap size to 128
MegaBytes:

-Xmx128m

The default unit for the memory settings is bytes. You must add a k or an m suffix to
specify that the number is to be interpreted as KiloBytes or MegaBytes.

Caution Using incorrect syntax for specifying these settings can prevent your
JVM from starting. If you modify these parameters, and JRun then fails
to restart, you may have to edit these settings by hand in the
global.properties file or local.properties file.

The following example sets the minimum and maximum heap size for a Java version
1.2 JVM, along with other settings:

-Xms64m -Xmx128m -Xrs -Djava.compiler=NONE

See the documentation for your specific JDK for the exact syntax and default values.

Note Allaire Knowledge Base article 13940 also describes this situation. For
more information on the Allaire knowledge base, go to
http://allaire.com/Support/KnowledgeBase/SearchForm.cfm.

Monitoring client/server communication

JRun provides an HTTP sniffer mechanism that allows you to monitor communication
between a Web client and an HTTP server and route that information to a JRun log file.
You can use the sniffer mechanism to track both the header and content portions of an
HTTP request/response. The sniffer mechanism can be useful to debug applications
because you can examine parameters passed by a client as part of a request, as well as
cookie settings from a Web server and other request/response content.

The sniffer mechanism monitors an HTTP port to detect client requests. When a client
makes an HTTP request to that port, the sniffer mechanism reads and logs the request,
then redirects the request to the target Web server. The sniffer waits for the response
from the Web server, logs the response, and then redirects the response back to the
client.

Chapter 40: Debugging and Error Messaging 435
In order for the sniffer mechanism to handle a request, you route the request to the
sniffer’s HTTP port. By default, the sniffer port is set to 8101. The sniffer then redirects
the request to the Web server for handling. Therefore, a URL to the default sniffer port
would have the following form:

http://localhost:8101/resource

The same request can be routed directly to the Web server to bypass the sniffer
mechanism using the following form:

http://localhost/resource

The sniffer mechanism can process multiple requests concurrently resulting in log
messages from different requests being interleaved in the log file. Therefore, the sniffer
mechanism prefixes each line in the log file with a unique request ID to identify the
request.

Configuring the sniffer mechanism

You use property files to configure the sniffer mechanism; you cannot control it
through the JRun Management Console (JMC).

The default settings for the sniffer mechanism for all JRun servers associated with a
single installation of JRun are stored in the global.properties file. Typically, you do
not modify the global.properties file. If you want to modify the default settings for
an individual JRun server, modify them in the local.properties file for that server.

The following property settings are the default settings in the global.properties file:

sniffer.class=allaire.jrun.http.Sniffer
sniffer.port=8101
sniffer.loglevel=info
sniffer.logcontent=true
sniffer.target.host=localhost
sniffer.target.port=80

These property settings specify the following options:

• Class that defines the sniffer mechanism

• HTTP port that the sniffer mechanism monitors for requests

• Sniffer message type in a JRun log file

• Log information includes both request/response header and content

• Name of the Web server handling requests

• Port number of the Web server

By default, JRun disables the sniffer mechanism. To enable it, you must add the sniffer
mechanism to the list of JRun services. You can enable services in either the
global.properties file or the local.properties file. Specifying it in
global.properties enables the sniffer mechanism for all JRun servers; specifying it in
local.properties enables it only for the JRun server associated with the
local.properties file.

436 Developing Applications with JRun
To enable the sniffer mechanism using global.propeties, you add the sniffer service
to the jrun.services property, as shown in the following example:

list of services to start
jrun.services=scheduler,logging,monitor,license,control,{servlet.service
s},{ejb.services},sniffer

To enable the sniffer mechanism using local.propeties, cut-and-paste the current
services list out of global.properties, paste it into the local.properties file for a
JRun server, and then append sniffer to the end of the list of services.

For more information on these properties, see “Sniffer mechanism properties” on
page 437.

Sniffer mechanism output

The sniffer mechanism writes its output to the log file for a JRun server. The following
example shows the output of the sniffer mechanism. In this example, the client
requests the SnoopServlet using the following URL:

http://localhost:8101/servlet/SnoopServlet

The information written to the JRun log file includes the following lines:

03/20 11:58:21 info HTTP Sniffer: Listening on port 8101, target is localhost:80
03/20 11:58:38 info SnoopServlet: init
03/20 11:58:50 info HTTP Sniffer: Accepted request 1
03/20 11:58:50 info HTTP Sniffer: Header 1 --> GET /servlet/SnoopServlet HTTP/1.0
03/20 11:58:50 info HTTP Sniffer: Header 1 --> Connection: Keep-Alive
03/20 11:58:50 info HTTP Sniffer: Header 1 --> User-Agent:Mozilla/4.7 (WinNT; I)
03/20 11:58:50 info HTTP Sniffer: Header 1 --> Host: localhost:8101
03/20 11:58:50 info HTTP Sniffer: Header 1 --> Accept: image/gif, image/x-xbitmap,

image/jpeg, image/pjpeg, image/png, */*
03/20 11:58:50 info HTTP Sniffer: Header 1 --> Accept-Encoding: gzip
03/20 11:58:50 info HTTP Sniffer: Header 1 --> Accept-Language: en
03/20 11:58:50 info HTTP Sniffer: Header 1 --> Accept-Charset: iso-8859-1,*,utf-8
03/20 11:58:50 info HTTP Sniffer: Header 1 -->
03/20 11:58:51 info HTTP Sniffer: Header 1 <-- HTTP/1.0 200 OK
03/20 11:58:51 info HTTP Sniffer: Header 1 <-- Server: JRun Web Server/3.0
03/20 11:58:51 info HTTP Sniffer: Header 1 <-- Date: Mon, 20 Mar 2000 16:58:51 GMT
03/20 11:58:51 info HTTP Sniffer: Header 1 <-- Set-Cookie:

jsessionid=953571530946269859;path=/
03/20 11:58:51 info HTTP Sniffer: Header 1 <-- Expires: Thu, 01 Dec 1994 16:00:00 GMT
03/20 11:58:51 info HTTP Sniffer: Header 1 <-- Connection: Close
03/20 11:58:51 info HTTP Sniffer: Header 1 <-- Cache-Control:

no-cache="set-cookie,set-cookie2"
03/20 11:58:51 info HTTP Sniffer: Header 1 <-- Content-Type: text/html
03/20 11:58:51 info HTTP Sniffer: Header 1 <--
03/20 11:58:51 info HTTP Sniffer: Content 1 <-- 00000000 30 4C 59 42 41 32 0D 0A 30
4C 49 45 48 32 30 59 <HTML>..<HEAD><T
03/20 11:58:51 info HTTP Sniffer: Content 1 <-- 00000016 4D 59 41 49 32 58 65 66 66
77 58 6B 79 7D 63 6B ITLE>SnoopServle
...

In this output, you can see that the sniffer mechanism is listening for requests over
port 8101 and redirecting them to port 80.

When the sniffer mechanism detects the request for the SnoopSerlvet, it logs the
request and all header information in the request. The lines in the log file
corresponding to the request contain the right arrow (-->).

Chapter 40: Debugging and Error Messaging 437
The response from the Web server contains the headers and the request content. The
lines in the log file corresponding to the response contain the left arrow (<--). In the
response, the log file contain both code of the response as well as the ASCII text.

Sniffer mechanism properties

Use the following properties to control and configure the sniffer mechanism.

sniffer.class
Specifies the JRun class that defines the sniffer mechanism. By default, this
property is set to allaire.jrun.http.Sniffer.

sniffer.port

Specifies the port number that the sniffer mechanism monitors for HTTP
requests. The default port number is 8101.

The sniffer mechanism and the associated Web server must use different port
numbers. That is, the properties sniffer.port and sniffer.target.port must
be different.

sniffer.loglevel

Specifies the log event type for sniffer output to a log file. Possible values are:
debug, error, warning, and info. The default value is info.

The JRun logging mechanism can filter messages based on the message level. For
more information, see Chapter 37.

sniffer.logcontent

If set to true, specifies to log the message content of the HTTP request/response.
If set to false, the sniffer mechanism only logs the request/response headers;
message content is not logged but is routed back to the client

The default value is true.

sniffer.target.host

Specifies the host name of the Web server that handles client requests. The default
value is localhost.

sniffer.target.port

Specifies the port number over which the Web server specified by
sniffer.target.host receives requests routed from the sniffer mechanism. The
sniffer mechanism recognizes requests over the port specified by sniffer.port,
then redirects the request to this port so that it can be handled by the Web server.

The default port value is 80.

The sniffer mechanism and the associated Web server must use different port
numbers. That is, the properties sniffer.port and sniffer.target.port must
be different.

438 Developing Applications with JRun
sniffer.loggername
Optionally specifies the name of the logger to use for receiving sniffer output
messages. By default, all sniffer output is directed to the log file for a JRun server.

This property allows you to create your own logger for receiving the sniffer output.
For example, you can use a logger to direct the sniffer output to its own file. For
more information on logging and loggers, see Chapter 37.

Additional debugging links

Many additional debugging articles and links are available for you to reference. The
following table lists several links that you might find useful:

Debugging Links

URL Description

http://unixsolutions.hp.com/products/java/
2_61_HPjmeter_content.html

Platform-independent tool to help detect
performance bottlenecks by graphically
displaying profiling data.

http://developer.java.sun.com/developer/
onlineTraining/Programming/JDCBook/perfTech.html

Tips for performance tuning and analysis
from Sun.

http://developer.java.sun.com/developer/
technicalArticles/Programming/Stacktrace/index.html

An introduction to Java stack traces from
Sun.

http://www-4.ibm.com/software/os/warp/
performance/javatip.htm

Java performance tuning from IBM.

http://www-4.ibm.com/software/developer/
library/tip-heap-size.html

Information on managing and optimizing
heap size.

http://www-4.ibm.com/software/developer/
library/java2/index.html

Information on Java, threads, and
scheduling under Linux from IBM.

http://www-4.ibm.com/software/developer/
library/perf-checklist/index.html

Finding and correcting Java performance
problems on IBM AIX servers.

http://www-4.ibm.com/software/developer/
library/jinsight/index.html

Description of Jinsight, a free tool for
visualizing Java program execution.

http://www.research.ibm.com/journal/sj/391/
viswanathan.html

Describes the Java Virtual Machine Profiler
Interface.

http://java.sun.com/people/billf/heap/ Describes the Java Heap Analysis Tool
(HAT) for reading -Xhprof files.

http://www.unixsolutions.hp.com/products/
java/2_61_HPjmeter_content.html

Describes HPjmeter, a free HAT-like tool
with a Swing interface from Hewlett
Packard.

Chapter 40: Debugging and Error Messaging 439
Custom Error Messaging
When JRun detects and error, it typically outputs an error message to the client to
signal the error. However, you may want to hide these JRun error messages and
replace them with your own.

This section describes how you can insert your own custom error messages into an
application in three different situations:

• Connector error messages: When an error occurs in the connection between
your Web server and JRun.

• HTTP error messages: When JRun detects an HTTP error in a Web application.

• Java exception messages: When a servlet or JSP page generates a Java
exception.

The following sections describe these error conditions.

Changing the default error message with connectors

JRun installs a native server connection module responsible for making a connection
between your Web server and JRun. In this scenario, your Web server acts as a client of
JRun. For more information on this connection, see Chapter 2.

JRun can detect an error over this connection for the following reasons:

• Connection time out

• Too many concurrent JRun requests

• Web server unable to connect to JRun

• Protocol Error

For each of these errors, JRun outputs to the client an HTTP 503 error and an error
message specifying that the error came from JRun. However, you can override JRun’s
default error messages to display your own customized error page.

The following list describes how to set your own error messages for several different
Web servers. In these examples, the file error.html contains your custom error
message.

• IIS

If you are using the Microsoft IIS Web server, add the following line to the file
\inetpub\scripts\jrun.ini:

errorurl=http://hostname/error.html

Save jrun.ini and then restart your Web server.

• NES

For the Netscape NES Web server, add the following entry to the JRun init line
in the Web server’s obj.conf file:

Init fn=jruninit ... errorurl="http://hostname/error.html"

440 Developing Applications with JRun
Save the configuration file and then restart your Web server.

• Apache

For the Apache web server, add the following line to the JRunConfig section in
the file httpd.conf:

JRunConfig errorurl "http://localhost/error.html"

Save the configuration file and then restart your Web server.

Setting HTTP error pages using web.xml

During the processing of a Web application, JRun can detect many different types of
HTTP errors. Upon detecting an HTTP error, JRun displays a standard error message
back to the client.

Within a Web application’s web.xml file, you can set your own error pages to handle
HTTP errors detected by JRun. This allows you to deliver custom error pages to a client
in the event of an HTTP error.

Note Since a web.xml file is associated with a single application, you can have
different error pages for each application. However, there is no way to
specify a global error page for all applications within a single JRun server.

The following excerpt from an application’s web.xml file causes JRun to display the
page 403.html in the event of an HTTP 403 error.

<error-page>
<error-code>403</error-code>
<location>/403.html</location>

</error-page>

Controlling Java exception messages using web.xml

One type of error detected by JRun is a Java exception thrown by a Java servlet. You can
use the web.xml file to display a custom error page in the event of JRun detecting a
specific Java exception type.

The following example configures JRun to display the page exception.html for any
Java exception generated by an application:

<error-page>
<exception-type>java.lang.Exception</exception-type>
<location>/exception.html</location>

</error-page>

Typically, you create custom error pages for your own custom exception classes and
use the exception-type tag to specify the exception class name.

Chapter 40: Debugging and Error Messaging 441
Using JRun with a Third-Party IDE
While you can develop your Web applications using a simple text editor such as
Microsoft Notepad, most people use a more sophisticated development environment.
Several companies distribute Java Interactive Development Environments (IDEs) that
you can use to develop, debug, and test servlets and JSP pages for Web applications.
These IDEs include the following:

• Symantec’s Visual Café

• IBM’s VisualAge for Java

• Microsoft’s Visual J++

• Borland’s JBuilder

• Sun's Forté

Common features of these IDEs include an editor, debugger, wizards, utilities, and
other features to enhance your development environment.

You can use these IDEs with JRun to develop your web applications. However, each of
these environments requires some configuration steps to integrate them with JRun.
Allaire has developed a Knowledge Base article on these IDEs that includes a
description of configuring them for use with JRun. You can access this article,
Knowledge Base article 14529, at the following URL:

http://allaire.com/Support/KnowledgeBase/SearchForm.cfm.

442 Developing Applications with JRun

C H A P T E R 4 1
Chapter 41 JRun Extensions
The specifications for the Java Servlet API and for JSP pages define the requirements
that all implementations of these technologies must meet in order to fulfill the
specification. However, JRun customers have requested additional functionality that
is not defined in the standard. To satisfy these requests, JRun has created extensions
to the standards.

This chapter describes the extensions that JRun adds to the Java Servlet API and to
the JSP syntax specification.

Contents

• Using JRun Extensions... 444

• Using the global.jsa file.. 444

• Extensions to the Servlet API... 446

444 Developing Applications with JRun
Using JRun Extensions
JRun includes several extensions to the Java Servlet API and to the JSP syntax
specification. These extensions include:

• The global.jsa (JRun Server Application) file: Allows you to create a central
file for application logic common to JSP pages. For more information, see
“Using the global.jsa file” on page 444.

• Servlet API extensions: Allows you to use methods to load a servlet, enumerate
loaded servlets, find the load time of a servlet, find the last access time of a
servlet, and unload a servlet. For more information, see “Extensions to the
Servlet API” on page 446.

Note If your Web application uses these extensions, it will not be portable to
other Web application servers.

Using the global.jsa file
The global.jsa (JRun Server Application) file allows you to create a central file that
contains application logic common to all JSP files accessed within a single application
or client session. The global.jsa file provides a centralized location for this code so
that you can maintain and modify logic shared by many JSP pages.

A global.jsa file must be stored in the same directory as a JSP page.

The following events trigger JRun to check for a global.jsa file:

• application-start events

After JRun starts, the first request for any JSP page in a directory containing a
global.jsa file causes JRun to read the file. Application-start events enable
you to write information to the JSP application object shared by all JSP pages
within the same application.

• session-start events

For each new client session (that is, each unique session identifier) the first
client request that accesses any JSP page in a directory containing a
global.jsa file causes JRun to read the file. Session-start events lets you
initialize the JSP session object shared by all JSP pages accessed by a single
client.

Note that a single application may contain multiple directories of JSP pages.
Session-start events are only triggered by the first client request to a JSP page in
the application. This request creates the client’s session object. Subsequent
requests, even to a JSP page in a different directory, do not trigger a session-
start event.

For example, the first client request to /index.jsp in a directory containing a
global.jsa file triggers the session-start event. However, if that same client,
with the same session object and session identifier, then accesses

Chapter 41: JRun Extensions 445
/store/checkout.jsp in a different directory that also contains a global.jsa
file, the session-start event for /store/global.jsa is not triggered.

• application-end events

When an application terminates, JRun checks for a global.jsa file in all
directories that served a JSP page. If found, JRun reads the file.

• session-end events

When a session expires, JRun checks for a global.jsa file in all directories that
served a JSP page. If found, JRun reads the file.

Each of the events that trigger JRun to check for a global.jsa file has an associated
method that JRun executes when it detects the event trigger. You can edit these
methods to insert your logic into the global.jsa file. The following table lists the
events and corresponding methods.

Within each of these methods, you can access the following JSP objects:

• sessionInit and sessionDestroy can access the session object.

• applicationInit and applicationDestroy can access the application
object.

Example global.jsa file

The following example shows the method syntax and an example method definition
for each method in the global.jsa file:

<%! public void sessionInit(HttpSession session)
{

System.err.println("session init: " + session.getId());
session.setAttribute("IDString","Session ID: " + session.getId());

}%>

<%! public void sessionDestroy(HttpSession session)
{

System.err.println("session destroy: " + session.getId());
}%>

Events and corresponding methods in global.jsa

Event Method

application-start applicationInit()

session-start sessionInit(HttpSession session)

application-end applicationDestroy()

session-end sessionDestroy(HttpSession session)

446 Developing Applications with JRun
<%! public void applicationInit()
{

application.setAttribute("appName", "MyApp");
}%>

<%! public void applicationDestroy()
{

System.out.println("Application terminated: " +
(String) application.getAttribute("appName"));

}%>

Enabling the global.jsa file

To enable JRun to check for global.jsa files, use the following procedure:

1. In the JRun Management Console (JMC), select the server-name > Web
Applications > app-name > JavaServer Pages property. The corresponding
form opens in the right side of the JMC.

2. Click the edit button.

3. Select the checkbox for Check for global.jsa.

When you enable this property, JRun checks for the existence of any global.jsa
files. When you disable it, JRun does not check for global.jsa files. This property
is initially disabled on JRun installation.

If your JSP pages do not use global.jsa files, you should leave this property
disabled to eliminate any unnecessary processing overhead.

For more information on the JMC, see the JRun Setup Guide.

Extensions to the Servlet API
JRun provides support for JSP documents through the ability for a servlet to
programmatically call a JSP document. JRun also supports the passing of request
scope objects to a JSP document. The following objects are available from within a
servlet invoked under JRun.

The class com.allaire.jrun.servlet.JRunServletResponse

This class implements the javax.servlet.http.HttpServletResponse�interface and
adds a method that allows servlets to call pages and optionally pass a context.

Note This class can also be referenced as
com.livesoftware.jrun.JRunServletResponse for backward
compatibility with previous releases of JRun.

The method added by this class is callPage.

Chapter 41: JRun Extensions 447
callPage(String fileName, HttpServletRequest req)
This method is used to serve a JSP page from within a servlet. Some context can be
passed to it via the request object. The file passed back will be passed with a
header directive that will indicate to the browser that this page is not to be cached.

Parameters:

fileName: The name of the URL that identifies a file that will be used to
generate the output and present the content. When the name begins with a "/"
it is assumed to be relative to the document root. When it does not begin with a
"/" it is assumed to be relative to the URL with which this current request was
invoked.

req: The HttpServletRequest object of the servlet invoking this method. The
content is typically passed as a bean in the context of the request object.

An example call to a JSP page from within a servlet’s service method follows:

service(HttpServletRequest req, HttpServletResponse res)
throws IOException, ServletException
{

JRunServletRequest jrunReq = (JRunServletRequest)req;
jrunReq.setAttribute(“greeting”, “Hello World”);

JRunServletResponse jrunRes = (JRunServletResponse)res;
jrunRes.callPage(“/a.JSP”, jrunReq);

}

The JSP file a.jsp retrieves the data as follows:

<% String greeting = (String)request.getAttribute(“greeting”); %>

For more information on passing control to another servlet, see “Passing Control” on
page 200.

JRunServletContext object

The methods listed in this section were added to provide a means for you to load a
servlet, enumerate loaded servlets, find the load time of a servlet, find the last access
time of a servlet, and unload a servlet. These methods provide you with a mechanism
for “expiring” servlets programmatically.

Additionally, the loadServlet and getLoadedServletNames methods were added to
ensure upward compatibility as the equivalent getServlet and getServletNames
methods have been deprecated in the Servlet API 2.1 by Sun Microsystems.

The JRunServletContext object extends the Servlet API’s ServletContext object and
adds the following public methods.

Methods

getLoadedServletNames()
This method returns a list of the servlets that are currently loaded as an
enumeration of strings. The servlet names are the full class name.

448 Developing Applications with JRun
Definition:

public java.util.Enumeration getLoadedServletNames()

getTimeLoaded()
Returns the time that the specified servlet was loaded. Null is returned if the
servlet is not currently loaded. Definition:

public java.util.Calendar getTimeLoaded(String servletName)

getLastRequestTime()
Returns the last time that the servlet received a service request from the Web
server (typically doGet() or doPost()). Definition:

public java.util.Calendar getLastRequestTime(String servletName)

unloadServlet()
Calls the destroy method on the specified servlet, then sets its reference to null so
the object will be garbage collected. An exception is thrown if the servlet is not
currently loaded. Definition:

public void unloadServlet(String servletName)
throws ServletException

loadServlet()
Instantiates the specified servlet and executes its init method. An exception is
thrown if the servlet does not exists (class file not found) or if the servlet is already
loaded. A reference to the loaded servlet is returned. Definition:

public Servlet loadServlet(String servletName)
throws ServletException

The following example shows how these methods can be used to programmatically
expire servlets:

/**
 * This method take a JRunServletContext and a timeout value and will
 * expire any servlet that has been around longer than the timeout.
 */
public void expireServlets(JRunServletContext context, int timeout)

{
for (Enumeration e = context.getLoadedServletNames();

e.hasMoreElements();)
{

String servletName = (String) e.nextElement();
if((context.getLastRequestTime(servletName) –

context.getTimeLoaded(servletName)) > timeout)
{

context.unloadServlet(servletName);
}

}
}

C H A P T E R 4 2
Chapter 42 Using JRun with ColdFusion
ColdFusion provides two tags that you can use to integrate with JRun:

• CFSERVLET: Allows a ColdFusion page to invoke a servlet.

• CFOBJECT: Allows a ColdFusion page to invoke an EJB.

This chapter tells you how to use CFSERVLET and CFOBJECT.

Contents

• JRun and ColdFusion ... 450

• Using CFSERVLET .. 450

• Using CFOBJECT.. 456

450 Developing Applications with JRun
JRun and ColdFusion
ColdFusion provides two tags that you can use to integrate with JRun:

• CFSERVLET: Allows a ColdFusion page to invoke a servlet.

• CFOBJECT: Allows a ColdFusion page to invoke an EJB.

The information in this chapter relies on the following assumptions:

• Both ColdFusion and JRun have been successfully installed.

• You know how to code in CFML.

• You know how to code Java servlets.

• You know how to code EJB clients.

• You have run the JRun Connector Wizard and have noted the JRun server
connector port (also known as the JRun proxy port).

Using CFSERVLET
When the ColdFusion server processes a CFSERVLET tag, it sends a request to JRun.
The JRun servlet engine processes the servlet and returns control to the ColdFusion
server along with the output of the servlet, including any changed attribute servlet
values.

The CFSERVLET tag allows a ColdFusion page to invoke a Java servlet. To invoke a
servlet, a ColdFusion page must know the following:

• Servlet name. This is either the servlet name as specified in the JMC or the
servlet class name.

• Proxy port. This is the port used by the Web server to communicate with JRun.
You specify this port number when configuring Web server - JRun
communication via the JRun Connector Wizard.

• Attributes. CFSERVLET allows you to pass attributes using the
CFSERVLETPARAM tag.

The remainder of this discussion shows you how to use the CFSERVLET tag.

Calling a Servlet from a CFML Template

You can easily call a servlet from a CFML page by using the CFSERVLET tag. The
CFSERVLET tag executes a Java servlet on a JRun engine. This tag is used in
conjunction with the CFSERVLETPARAM tag, which passes data to the servlet, if the
servlet has parameters and/or attributes.

Syntax <CFSERVLET
CODE="class name of servlet"
JRUNPROXY="proxy server"
TIMEOUT="timeout in seconds"

Chapter 42: Using JRun with ColdFusion 451
WRITEOUTPUT="Yes" or "No"
DEBUG="Yes" or "No">
<CFSERVLETPARAM
NAME=”parameter name” or "attribute name"
VALUE=”value”
>
...

</CFSERVLET>

The following attribute descriptions provide information that is important to the first
time servlet user because you have to specify the name of the servlet, and you need to
specify the IP address if you are running on a remote host.

CODE
Required. The class name of the Java servlet to execute.

JRUNPROXY
Optional. Specifies a remote machine where the JRun engine is executing. By
default, the JRun engine is assumed to be on the host running ColdFusion. To
indicate the name of a remote host, specify the IP address of the remote host
followed by a colon and the port number at which JRun is listening. This is the
JRun server connector port specified when running the JRun Connector Wizard.

Example The following example shows the use of this tag in its simplest form, calling
SnoopServlet.

<HTML>
<HEAD>
<TITLE>CFSERVLET</TITLE>
</HEAD>
<BASEFONT FACE="Arial, Helvetica" SIZE=2>
<BODY bgcolor="#FFFFD5">

<H3>CFSERVLET</H3>
<p>
<!--- JRUNPROXY is Web server IP:proxy port.
 To determine proxy port, look at the

 jcp.endpoint.main.port property in the
 local.properties file for the JRun server
 you want to access. --->

<CFSERVLET code="SnoopServlet"
 JRUNPROXY="127.0.0.1:53003"
 TIMEOUT="10" >
</CFSERVLET>

</BODY>
</HTML>

You can view this from your browser as you would any other CFML page.

452 Developing Applications with JRun
Calling a Servlet that has Parameters and Attributes

You can call a servlet that has parameters and attributes from a CFML template by
using the CFSERVLETPARAM tag. This tag allows you to pass by reference and by
value.

Example
Servlet

The following servlet uses both parameters and attributes. In addition, it changes the
value of the attributes and returns the new values to the corresponding CFML
variables.

import java.io.*;
import java.util.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class MySimpleServlet extends HttpServlet {

 public void doGet (HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {

// Set content type and create PrintWriter.
res.setContentType("text/html");
PrintWriter out = res.getWriter();
// Then write the data of the response.
//out.println("<HEAD><TITLE>SimpleServlet</TITLE></HEAD><BODY>");
//out.println("<h1> SimpleServlet Output </h1>");
//out.println("<P>This is output from SimpleServlet.");

// Get the names of the parameters.

 Enumeration enumNames = req.getParameterNames();

// Now write the name of each parameter and its value in a while loop
out.println("<P>Here are the pass-by-value parameters.");
while (enumNames.hasMoreElements()) {
 String strName = (String)enumNames.nextElement();
 out.println("
 " + strName + ": " + req.getParameter(strName));
}

// If you know the names of the parameters, refer to them by name.
out.println("<P>Here are the pass-by-value parameters, again.");
out.println("
 Town: " + req.getParameter("town"));
out.println("
 State: " + req.getParameter("state"));

// Get the names of the attributes.
Enumeration enumAttrNames = req.getAttributeNames();
out.println("<P>Here are the attributes.");
while (enumAttrNames.hasMoreElements()) {
 String attrName = (String)enumAttrNames.nextElement();
 out.println("
 " + attrName + ": " + req.getAttribute(attrName));
}

// If you know the names of the attributes, refer to them by name.

Chapter 42: Using JRun with ColdFusion 453
out.println("<P>Here are the attributes, again.");
out.println("
 aString: " + req.getAttribute("aString"));
out.println("
 aDate: " + req.getAttribute("aDate"));
out.println("
 aDouble: " + req.getAttribute("aDouble"));

// Get the aString attribute and assign it to StringObject.
Object StringObject = req.getAttribute("aString");
if(StringObject != null) {
 String myString = (String)StringObject;
 // Print it out.
 out.println("
 The string value is: \"" + myString + "\"");
 // Modify the string.
 myString = "New value from servlet";

 // Print out the modified string.
 out.println("
 The string value is: \"" + myString + "\"");

 // Modify the original object.
 StringObject = myString;

 // Return the new value of StringObject to the CFML variable.
 req.setAttribute("aString", StringObject);

 }
else {
 out.println("<h2>StringObject is null</H2>");
}
// Get the aDate attribute and assign it to the DateObject object.
Object DateObject = req.getAttribute("aDate");

// Check to see if the DateObject object is of the Date type. If not
// throw an exception.
if(DateObject != null) {
 if(DateObject instanceof java.util.Date) {

 // Let the JVM know DateObject has the Date class by using
 // a (Date) cast and by setting myDate to its value.
 // NOTE: Date is a class in Java.
 Date myDate = (Date)DateObject;
 // Print it out.

 out.println("
Date value:\"" + myDate.toString() + "\"");

 // Modify it for return.
 myDate = new Date(System.currentTimeMillis());

 // Print it out.
 out.println("
MODIFIED date:\"" + myDate.toString() + "\"");

 // Modify the original object.
 DateObject = myDate;

 // Return the new value of DateObject to the CFML variable.
 req.setAttribute("aDate", DateObject);

 }
 else {

454 Developing Applications with JRun
 throw new ServletException("Illegal type for aDate - expected
type java.util.Date and instead the type was:" +
DateObject.getClass().getName());
 }
 }

else {
 out.println("<h2>DateObject is null</H2>");
}
// To change the value of the real number we passed in,
// get the aDouble attribute and assign it to the RealObject object.
Object RealObject = req.getAttribute("aDouble");

// Let the JVM know RealObject has the Double class by using a
// (Double) cast and by setting myDouble to its value.
// NOTE: Double is a class in Java; whereas double is a scalar type.
if(RealObject != null) {
 Double myDouble = (Double)RealObject;

 // Print out the value of myDouble by using the toString method.
 out.println("
 Value of Parameter that was passed in: " +

myDouble.toString() + "\"");

 // Extract the scalar (real/double) value from the myDouble object
 // and assign it to dVal.
 double dVal = myDouble.doubleValue();

 // Add 100 to the real value that was passed in.
 dVal += 100.0;

 // Assign the new value to the myDouble double.
 myDouble = new Double(dVal);

 // Print out the modified value.
 out.println("
 Double: " + myDouble.toString() + "\"");

 // Modify the original object.
 RealObject = myDouble;

 // Return the CF variable from the servlet aDouble attribute.
 req.setAttribute("aDouble", RealObject);

 }
else {
 out.println("<h2>RealObject is null</H2>");
}

// out.println("</BODY>");
out.close();

 }

 public String getServletInfo() {
 return "A simple servlet";
 }
}

Chapter 42: Using JRun with ColdFusion 455
Example
CFML

The following CFML template invokes the previous sample Java servlet. Each
parameter and attribute referenced in the Java servlet must be passed with a
CFSERVLETPARAM tag.

To pass parameters, you need to use the attributes NAME and VALUE, where NAME is
the name of the parameter and VALUE refers to its value. To pass attributes, you need
to use the attributes NAME, VARIABLE, and TYPE, where NAME is the name of the
attribute in the Java servlet, VARIABLE is the name of the corresponding variable in the
CFML page, and TYPE is the data type of the variable. You need specify TYPE only if
you are working with integer, Boolean, or real (floating point) values.

<HTML>
<HEAD>
<TITLE>CFSERVLET</TITLE>
</HEAD>

<BASEFONT FACE="Arial, Helvetica" SIZE=2>
<BODY bgcolor="#FFFFD5">

<H3>CFSERVLET</H3>

<CFPARAM name="aUser" default="Mary Horvath">
<CFPARAM name="aReal" default="44.6">
<CFPARAM name="theDate" default="#now()#">

<p>These are the values of the attributes that are to be passed into the
servlet.</p>
<cfoutput>

User: #aUser#
Real Number: #aReal#
Date: #theDate#

</cfoutput>
<p>Call MySimpleServlet to demonstrate the following:

How to pass parameters.
How to pass attributes.
How to change the value of an attribute within a servlet and return
it to the CFML page.

<CFSERVLET jrunproxy="52000" code="MySimpleServlet" debug="Yes">
<cfservletparam name="aString" variable="aUser" type="STRING">
<cfservletparam name="aDouble" variable="aReal" type="REAL">
<cfservletparam name="aDate" variable="theDate" >
<cfservletparam name="town" value="Concord">
<cfservletparam name="state" value="MA">
</cfservlet>
<p>Here are the modified values of the attributes:</p>
<CFOUTPUT>
<P>User: #aUser#
<P>Number: #aReal#
<P>Date: #theDate#
</CFOUTPUT>

456 Developing Applications with JRun
</BODY>
</HTML>

Using CFOBJECT
When using the CFOBJECT tag to access an EJB, you use CFOBJECT tags to obtain
references to the objects necessary for communication with JRun. Once this has been
accomplished, your ColdFusion file can access the EJB and call it’s methods. To use
CFOBJECT, you perform the following tasks:

• Deploy the EJB in JRun.

• Define Java settings in the ColdFusion Administrator.

• Code a CFML file.

Deploy the EJB

The EJB you want to access must have been deployed into your JRun server. For more
information on EJB deployment, see Chapter 34. This discussion accesses the Balance
entity bean, found in jruninstallroot/samples/sample1a/ejbeans. To run this
example, you must first compile and deploy Sample 1a, as shown in the JRun Samples
Guide.

Define Java settings in the ColdFusion Administrator

Before using CFOBJECT to interact with an EJB, you must define the following settings
in the ColdFusion Administrator’s Java pane:

• The Java VM to use. Specify the following:

jdkpath\jre\bin\classic\jvm.dll

• The classpath to use when starting the JVM. This must include:

• The filename and path to the ejipt_client.jar file.

• The name and path to the EJB’s .jar file in the /runtime directory. This
file is created by the Deploy tool and copied from the /deploy directory
to the /runtime directory when JRun starts up.

A sample classpath specification is shown below:

c:\program files\allaire\jrun\lib\ejipt_client.jar;c:\program
files\allaire\jrun\servers\default\runtime\sample1a_ejb.jar

• JVM initialization parameters. Specify a security policy and the Java security
manager class, as shown in the following:

java.security.policy=c:\program
files\allaire\jrun\lib\jrun.policy;java.security.manager=java.rmi.RM
ISecurityManager

Chapter 42: Using JRun with ColdFusion 457
After deploying the EJB and defining settings in the ColdFusion Administrator, restart
the server machine (or machines).

Code a CFML file

A CFML file attempting to access an EJB must perform the following steps:

• Obtain a reference javax.naming.context. This reference is used to access
constant values used for properties.

• Obtain a reference to java.util.Hashtable. This reference is used to define
properties. After calling CFOBJECT, call the init method to invoke the
java.util.HashTable constructor.

• Obtain a reference to javax.naming.InitialContext. After calling CFOBJECT,
call the init method, passing the properties, to invoke the
java.util.InitialContext constructor. After initialization, this reference is
used to lookup the EJB.

• Obtain a reference to the EJB’s home object.

• Create the EJB instance or access an existing EJB instance (existing EJB
instances apply to entity beans only).

• Call one or more methods defined for the EJB.

The following CFML file accesses the Balance bean defined in Sample1a and calls the
save method.

<html>
<head>

<title>CFOBJECT Test</title>
</head>

<body>
<H1>CFOBJECT TEst</H1>
<!-- Create the Context object to get at the static fields. --->
<CFOBJECT
 action=create
 name=ctx
 type="JAVA"
 class="javax.naming.Context">

<!-- Create the Properties object and call an explicit constructor--->
<CFOBJECT
 action=create
 name=prop type="JAVA"
 class="java.util.Hashtable">

<!--- Call the init method (provided by CFOBJECT)
 to invoke the HashTable constructor. --->
<cfset prop.init()>

<!-- Specify the properties --->

458 Developing Applications with JRun
<cfset prop.put(ctx.INITIAL_CONTEXT_FACTORY,
"allaire.ejipt.ContextFactory")>
<cfset prop.put(ctx.PROVIDER_URL, "ejipt://rnielsen:2323")>
<cfset prop.put(ctx.SECURITY_PRINCIPAL, "chief")>
<cfset prop.put(ctx.SECURITY_CREDENTIALS, "pass")>

<!-- Create the InitialContext --->
<CFOBJECT
 action=create
 name=initContext
 type="JAVA"
 class="javax.naming.InitialContext">

<!--- Call the init method (provided through CFOBJECT)
 to pass the properties to the InitialContext constructor. --->
<cfset initContext.init(prop)>

<!--- Get reference to home object. --->
<cfset home = initContext.lookup("sample1a.BalanceHome")>
<!--- Create new instance of entity bean.
 (hard-wired account number). Alternatively,

 you would use a find method to locate an
 existing entity bean. --->

<cfset balance = home.create(123)>

<!--- Call a method in the entity bean.
 this example is hard-wired to save $500.--->
<cfset balance.save(500)>

<!--- Close the context. --->
<cfset initContext.close()>

</body>
</html>

Index
Special
--%> 100
/deploy 251, 352, 358
/ext 250
/runtime 251
/samples 353
<!-- 100
<% 107
<%-- 100
<%! 107
<%= 108
<%@ 101
<include> tag 153
<servlet> tag 152, 180
<subst> tag 157
== 287
-> 100
@sources 357
2-phase commit transaction

management 39, 42, 330

A
Access control 44
actions 108

jsp:forward 114
jsp:getProperty 112
jsp:include 113
jsp:param 114
jsp:plugin 115
jsp:setProperty 111
jsp:useBean 109
See also custom tags

admin JRun server 15
as NT service 17
HTTP requests and 16
JMC and 16
JWS and 17
ports 16
starting 17

administration 39
Allaire

contacting xxii
technical support xxii

allaire.ejipt.ContextFactory 334
allaire.ejipt.DefaultStore 280
allaire.ejipt.Ejipt 255, 339
allaire.ejipt.tools.Deploy 358
allaire.jrun.security.Authenticatio

nInterface 413
allaire.jrun.security.PropertyFileA

uthentication 412
options

add 413
convert 413
edit 413
remove 413

allowedIdentities property 354
application assembler

J2EE application 362
Web application 344

application mappings
fundamentals 68
usage 69

application object 34
See also ServletContext object

application.xml file 362
Asynchronous messaging 39
AT_BEGIN 230
AT_END 230
attributes

getAttribute method 200
JSP pages 87

accessing 88
Authentication 39, 43

EJB allowed identities 354
See also Web application

authentication
AutoCaller 265

B
bean managed persistence

(BMP) 43, 275, 276

bean managed transactions 332
bean properties 255

description 353
overrides 257
See also deployment descriptor

bind 333
bind address 18
BodyTag interface 217
BodyTagSupport class 217, 218

body content interaction 224
Borland’s JBuilder 441
buffering

autoflush 104
JSP page output 91, 92
JSP pages and 103
jsp:forward and 114
jsp:include and 113

BytesMessage 296

C
caller identity 42, 335
CFOBJECT tag 456
CFSERVLET tag 450
class

JRunServletResponse 446
example 447
methods 446

Class Loading 338
Class.forName method 203
classes 251
classpath

EJB 255, 338, 340
Web applications 54

default 54
modifying 54
nonreloadable 54
reloadable 54

client demarcated
transactions 331

client/server connection
monitoring 434

460 Developing Applications with JRun
close method 264, 277
ClusterCATS 8
codebase 338
ColdFusion

EJB access 456
Java settings in CF

Administrator 456
servlet access 450

collection 269, 288
Command line overrides 255
compilers

Deploy tool 358
javac 179, 357
jikes 130
JSP compiler 130
JSPC compiler 133

config object 34, 123
See also ServletConfig object

configurable pools 43
Connection 292
connection pooling 263, 276
connections 43
Connector 292

source code 19
Web application interaction 68

connector monitoring
See Web server connection

monitoring
connectors 8
consumers 293
container 38, 254
container managed persistence

(CMP) 39, 43, 282, 353
Container properties 254
containers 254
context 42, 262, 263, 273
context factory 333
context path 69
Context/Bean Instance Pools 263
cookies

accessing 210
definition of 209–210
establishing 210

core dumps
JRun and 432
reasons for 432

create 41, 269, 283, 285
createAutoCaller method 265
CreateException 269, 277, 285
createSQL statement 285
createStatement method 277, 278
Custom data stores 264
custom tags

coding attributes in a JSP page 224

defining in TLD file 220
invoking 221
JSP page 234
overview 216
scripting variables 229
See also tag libraries

D
data sharing 39
Data source properties 276
database connections 43

JDBC driver 206
JDBC-ODBC bridge 203
JRun data source service 207
management 263
ResourceManager class 264

database schema 276
Deadlocks 333
debugger

starting 430
debugging

client/server monitoring and 434
core dumps and 432
debugger and 430
out of memory errors and 433
sniffer mechanism and 434
stack trace and 430
URL links for 438

default JRun server 15
as NT service 17
default Web application and 57
demo application and 16
JWS and 17
ports 17
starting 17
Web applications and 52

default Web application 56, 68
application root directory 58
characteristics 56
classpath

modifying 58
nonreloadable 58
reloadable 58

directory structure 58
JWS and 58
motivation for 57
requests to 57
root directory of 56
URL mapping 56
using 57

default.definitions file
applicability of 158
definition of 157
location of 158

using in JRun 157
default.properties 254, 256, 280, 355,

356
default.template file

definition of 156
using in JRun 156

default_exports.jar 250, 338
default_objects.jar 250
DefaultStore 264, 279
DELETE 279, 287
Deploy tool 44, 249, 250, 251, 254,

268, 269, 353, 357
deploy.properties 254, 256, 276, 284,

339, 358
EJB deployment 356

deployer 344
deployment

Ear files 362
EJB 352
overview 341
War files 345

deployment descriptor 21, 51, 254
application.xml 362
EJB 255, 354
See also bean properties
See also web.xml file

deployment properties 41
destroy method 171, 192, 194
developer resources xix

books xxi
online xxii

development tools 10
directives

include 105
JSP pages and 101
page 102
taglib 105

dirty 287
Distributed 2-phase commit

transaction management 39
distributed garbage collection 39
distribution 38
doAfterBody method 224
docs directory 249
documentation conventions xxi
doDelete method 198
doEndTag method 218, 224
doGet method 196
doHead method 198
doInitBody method 224
doOptions method 198
doPost method 197
doPut method 198
doStartTag method 218

Index 461
dot addressing mechanism 121
doTrace method 198
DriverManager.getConnection

method 203
dynamic bean loading 359

E
Ear file

creating 364
J2EE application deployment 362

EarDeploy tool 365
EJB engine

JRun integration 37
stand-alone mode 339

ejb objects 251
ejb.allowedIdentities 333, 354
ejb.beanHomeName 353
ejb.containerManagedFields 282, 289
ejb.enterpriseBeanClassName 353
ejb.homeInterfaceClassName 353
ejb.isReentrant 257
ejb.isReentrant=true 258
ejb.jar 250, 338, 340, 360
ejb.primaryKeyClassName 353
ejb.remoteInterfaceClassName 353
ejb.sessionTimeout 255, 354
ejb.stateManagementType 354
ejb.transactionAttribute 330, 332
ejb_jar.xml file 255
ejbActivate method 271, 273
EJBContext.getEnvironment

method 255
EJBContext.getEnvironment().getProp

erty method 256, 258
ejbCreate method 270, 273, 277, 285,

289
ejbeans.jar 249
ejbFindByPrimaryKey method 288
ejbLoad method 271, 277, 286, 289
EJBObject 268
ejbPassivate method 271, 273
ejbPostCreate method 271, 277, 285,

289
EjbProperties object 353
ejbRemove method 271, 273, 279,

287, 289
ejbStore method 278, 286, 289
ejipt 263
Ejipt instance.store 279
ejipt.cache 251
ejipt.classServer.host 356
ejipt.createSQL 283
ejipt.createSQL.fields 283
ejipt.createSQL.params 283

ejipt.createSQL.paramTypes 283
ejipt.createSQL.source 283
ejipt.ejbJars 254, 356, 357, 358
ejipt.findByPrimaryKeySQL 288
ejipt.findnameSQL 284
ejipt.findnameSQL.fields 284
ejipt.findnameSQL.params 284
ejipt.findnameSQL.paramTypes 284
ejipt.findnameSQL.source 284
ejipt.isCompatible = true 358
ejipt.isCreateSilent 286
ejipt.isLocal 334
ejipt.isTimeoutFromCreate 354
ejipt.jar 249, 255, 340
ejipt.javac 358
ejipt.jdbcSources 276, 284, 356, 357
ejipt.loadSQL 283, 286
ejipt.loadSQL.fields 283
ejipt.loadSQL.params 283
ejipt.loadSQL.paramTypes 283
ejipt.loadSQL.source 283
ejipt.loginSessionHomeName 356,

357
ejipt.logStackTrace 356, 357
ejipt.maxContexts 263, 356
ejipt.maxFreeContexts 263
ejipt.minFreeContexts 263
ejipt.postCreateSQL 283, 286
ejipt.postCreateSQL.fields 283
ejipt.postCreateSQL.params 283
ejipt.postCreateSQL.paramTypes 283
ejipt.postCreateSQL.source 283
ejipt.properties 44, 250, 254, 255, 256,

257
ejipt.removeSQL 283, 287
ejipt.removeSQL.fields. 283
ejipt.removeSQL.params 283
ejipt.removeSQL.paramTypes 283
ejipt.removeSQL.source 283
ejipt.roleHomeName 356, 357
ejipt.sessionScope 334
ejipt.source... 357
ejipt.sourceDriverClassName 276,

339
ejipt.sourcePassword 276, 356
ejipt.sourceURL 276, 356
ejipt.sourceUser 276, 356
ejipt.storeClassName 264, 280
ejipt.storeName 264, 280, 356, 357
ejipt.storeSQL 283, 286
ejipt.storeSQL.fields 283
ejipt.storeSQL.params 283
ejipt.storeSQL.paramTypes 283
ejipt.storeSQL.source 283

ejipt.threadScope 265
ejipt.userHomeName 356, 357
ejipt_client.jar 249, 338, 340, 360
ejipt_exports.jar 249, 250, 251, 254,

338, 340, 358, 359, 360
ejipt_jms_client.jar 249, 360
ejipt_objects.jar 249, 251, 254, 340,

358
ejipt_tool.jar 249
EjiptProperties object 254, 353
Enterprise JavaBeans 38, 40

access from servlets 320
access via ColdFusion 456
availability xix
defined 7
features 21
J2EE applications and 7
jar file and 21
property files 21
requirements 21
specification supported xviii

Enterprise-Bean 356
entity 267
Entity beans 269
entity objects 39
entity-based caching 39
EntityBean interface 270
EntityContext interface 270
enumeration 269, 288
environment properties 42
error handling 175
error messaging

connectors and 439
Apache 440
IIS 439
NES 439

controlling 439
customizing 439
HTTP 440

controlling 440
Java exceptions and 440

controlling 440
error pages

JSP pages and 93
Web servers and 72

EVAL_BODY_INCLUDE 218
EVAL_BODY_TAG 224
EVAL_PAGE 218
exception object 121, 123
exceptions, handling 33
executeQuery method 277
executeUpdate method 277, 278
ext directory 250
Extensions 360

462 Developing Applications with JRun
extra_exports.jar 254, 358, 359

F
failover 8, 39
file serving 71

scenarios 72
findAncestorWithClass method 227
findByPrimaryKey method 269, 271,

288
findByPrimaryKeySQL method 288
finder 269, 284, 287
FinderException 269, 271
finderSQL 287
firewall, servlet access to EJBs 320
flat transactions 330
forward method 200

G
garbage collection 39
GenericServlet class

accessing parameters 194, 195
coding methods in 192
definition of 186
logging messages 194, 195
method overrides 170, 192

getAttribute method 200, 202
getConnection method 277, 278

sourcename 264
getInitialContext method 333
getInitParameter method 182, 194
getInitParameterNames method 194
getInt method 277
getLocalEJBHome method 262
getParameter method 180

default behavior 239
getPrimaryKey method 277
getRequestDispatcher method 200
getResource method 213
getServletConfig method 194
getServletContext method 194
getServletInfo method 192, 193
getSession method 202, 239
getStore method 264
getVariableInfo method 230
global variables 182
global.jsa file

enabling 446
events

application-end 445
application-start 444
session-end 445
session-start 444

example 445
methods 445

global.properties 23
groups

Web application authentication
and 400

H
heap size

default 433
modifying 434

home 249, 251, 353
home implementations 357
home interface 41, 268, 269
Home Name 353
HTML pages

passing control to 201
HTTP request/response process 26,

32
HTTP server 338
HttpServlet class

coding methods in 195
definition of 186
method overrides 171, 196, 197,

198
HttpServletRequest class

HttpSession interface 202
HttpServletRequest object 32
HttpServletRequest parameter 195
HttpServletResponse object 32
HttpServletResponse parameter 195
HttpSession object 34

See also session object

I
IBM’s VisualAge for Java 441
IDE 268
identities 354
implicit servlet mappings 70
implicit transaction management 331
IN 289
include directive

JSP pages 88
using 105

include method 212
init method 170, 182, 192, 193, 238
INITIAL_CONTEXT_FACTORY 334
InitialContext object 333
initialContext object 335
initialization parameters 181, 183,

194
INOUT 289
in-proc 39
INSERT 277, 286
Instance Manager 263
instance pool 271

instance.store 43, 251, 264, 269, 271,
272, 279, 357

InstanceManager 262, 263
InstanceManager.isDirty method 287
InstanceManager.isFirst method 263
InstanceManager.isLast method 263
InstanceManager.setDirty

method 279
instrumentation

configuring 421
example 421

enabling 421, 425
example 418
excluding methods from 425
including classes in 427
including methods in 425, 428

second level 428
including subclasses in 428
JRunStats servlet and 422, 425
JSP pages and 424
logging and 420
method timing and 418, 419

second level 419, 420
output 419

components of 420
directing to client 422

output format 419
properties 425

class and method 427
logging 426

using 418
invoker esrvlet

security considerations 71
invoker servlet

implicit servlet mapping for 70
usage 71
Web applications and 62

isCreateSilent 286
isDirty method 287
isFirst method 263
isLast method 263
isStored method 271
isValid method 233

J
J2EE application 5

components 7
deployment 362
deployment via EarDeploy

tool 365
deployment via JMC 364
packaging 362
three-tier model

client tier 5

Index 463
data tier 5
middle tier 5

users and roles 365
jar files

EJB 357
jar utility

Ear file creation 364
EJB 357
War file creation 346

Java
benefits 4, 28

Java 2 44, 288
Java Database Connectivity 40
Java database connectivity API. See

JDBC 203
Java Message Service 21, 40, 249, 292

architecture 292
components 294
features 21
message header fields 294
overview 292
point-to-point 296
publish-subscribe 306
specification supported xviii

Java Naming and Directory Interface
See JNDI

Java Runtime 360
Java Servlet API

changes from 2.0 to 2.2 237
classes 169
definition of 186
HTML version in JRun 120
HttpSession interface 202
interfaces 169
javax.servlet package 186, 187, 188
javax.servlet.http package 188,

189, 190
JRun extensions to 443, 446

JRunServletContext object 447
JRunServletResponse class 446

JRun support of 168, 186
packages included in 186
reference information 190
specification supported xviii
Web application authentication

and 398
Java Transaction API 40
Java Transaction Server

specification supported xviii
java.naming.spi.InitialContextFactory

333
java.security.acl.Group 43, 265
java.security.Principal 43, 265
java.sql.Connection 264

java.util.Properties 254
javac

EJB compilation 357
servlet compilation 179

JavaScript 30
JavaServer Pages

See JSP pages
javax.ejb.DuplicateKeyException 286
javax.ejb.EJBHome 269
javax.ejb.EJBObject 268
javax.ejb.EntityBean 270
javax.ejb.SessionBean 272
javax.jms.MessageListener 293
javax.servlet package 186, 187, 188
javax.servlet.http package 188, 189,

190
javax.servlet.jsp.tagext package 217
jaxp.jar 250
JDBC 40, 270, 276, 284, 287, 339, 356

database access 203–209
drivers 203–207, 276
JDBC-ODBC bridge 203, 205, 206
native API drivers 206
native protocol drivers 206
net protocol drivers 206

jdbc.jar 250, 338, 340
JDBC_DRIVERS 339
JDBC-ODBC bridge 276
jdbcSources 276
jdcb.jar 360
JDK 1.1 340, 358, 360
JDK 1.2 21, 44, 360
JMS

See Java Message Service
jms.jar 250, 338, 340, 360
JNDI 40, 41, 262, 353

API 40
context 207, 333, 353

jndi.jar 250, 338, 340, 360
JRE 360
JRun

architectural model 5
ClusterCATS 8
configuring 22

JMC and 22
property files and 23

custom error messaging 439
data source service 207
database access 203–209
debugging 429
developer resources xix

books xxi
online xxii

Enterprise JavaBeans

availability xix
specification supported xviii

error handling 175
extensions 443
features xviii
IDEs and 441
J2EE applications and 5
Java Message Services

specification supported xviii
Java Transaction Server

specification supported xviii
JSP pages

specification supported xviii
logging mechanism 377
product variations xviii

JRun Developer xviii
JRun Enterprise xix
JRun Professional xix

programming model 13
security 176
servlet chaining 174–??, 175–??
servlet lifecycle 169, 170, 171
servlets

specification supported xviii
SHTML support 152
SSI support 152
SSIFilter 162
technical support xxii
three-tier model and 5
user types 12
Web application

authentication 397
Web server interaction 71
Web servers and 18

bind address 18
connecting 18
network port 18
request processing 18

JRun demo 16
JRun demo application 16
JRun Developer xviii
JRun documentation

document list xx
documentation conventions xxi

JRun Enterprise xix
JRun features

development tools 10
monitoring utilities 10
scalability 8
security 9
session tracking 9
Web server connectors 8

JRun Management Console (JMC) 22
EJB deployment 358

464 Developing Applications with JRun
J2EE application deployment 364
Web application deployment 348

JRun Professional xix
JRun servers 14

admin 15
default 15

Web applications and 52
EJBs and 14
features 15
JSP pages and 14
JVM and 17

supported versions 17
process model 15
servlets and 14
Web applications and 14, 49, 52
Web servers and 14

JRun Web server 15
admin JRun server and 17
default JRun server and 17
document root directory 19
using 19

jrun.policy 250
JRUN_HOME 45, 248, 254, 360
jrunpasswd utility 412

options
add 413
convert 413
edit 413
remove 413

JRunStats servlet 422, 425
JSP compiler

bypassing 131, 132
classpath for 130
command line 130
compilation process 131
configuration 130
default 130
dependency checking and 132
disabling 132
enabling 133
JMC and 130
jsprt servlet 132
placeholders 130

%c 130
%d 130
%f 130

properties 130
recompilation 132
See also JSPC compiler

JSP objects
accessing 119, 120, 121
application 122
config 123

corresponding Servlet API
objects 120

exception 123
exception object 123
out 124
out object 86
pageContext 124
request 125
request object 86
RequestDispatcher 200, 212
response 126
response object 86
ResultSet 203
ServletConfig 194
ServletContext 175, 194, 200, 210,

213
ServletRequest 200
session 121, 127
Statement 203
using in JSP pages 86, 121

JSP page compilation, disabling 346
JSP Page specification

JRun extensions to 443
JSP page synchronization 230
JSP pages

.class files 83

.java files 83
attributes 87

accessing 88
authentication role information

accessing 404
buffering and 91, 92, 103
calling 90
compilers 129

JSP compiler 130
JSPC compiler 133

conditional logic 85
contents 80
creating 81
custom tag usage 234
defined 7
dependency checking 89
directory of 81, 84
error handling 93

error pages 93, 104
request errors 93
translation errors 93

error pages 93, 104
example 81
examples 137
expressions 86
file import 102
include directive 88
instrumenting 424

Java servlets and 80
jsp:forward directive 90
jsp:include directive 90
JSPC compiler 133
location of 60
MIME type of 103

specifying 103
objects 86

out object 86
request object 86
response object 86

parameters 87
accessing 88
passing 91

passing control to 201
scripting and 80
scripting language

specifying 102
specification 147
specification supported xviii
syntax 97
tag libraries and 92
translating 83
upgrading specification 147
variables 84
Web applications

location 60
Web applications and

adding 60
JSP specification

supported version 147
upgrading version 147

JSP syntax
actions 108

jsp:forward 114
jsp:getProperty 112
jsp:include 113
jsp:param 114
jsp:plugin 115
jsp:setProperty 111
jsp:useBean 109

attribute quoting 99
comments 100

client comments 100
JSP comments 100

declarations 107
directives 101

include 105
page 102
taglib 105
using 101

escaping characters 99
expressions 108
HTML text and 98

Index 465
include directive 105
page directive 102
quoting attributes 99
scripting elements 106

declarations 107
expressions 108
scriptlets 107

tag placement 99
taglib directive 105
template text 98
URLs and 100
white space 99

jsp:forward
attributes

page 114
buffering and 114
syntax 114
using 114

jsp:forward directive
JSP pages and 90

jsp:getProperty
attributes

name 113
property 113

syntax 112
using 112

jsp:include
attributes

flush 113
page 113

buffering and 113
syntax 113
using 113

jsp:include directive
JSP pages and 90

jsp:param
using 114

jsp:plugin
attributes

align 116
archive 116
code 116
codebase 116
type 116

syntax 115
using 115

jsp:setProperty
attributes

name 111
param 112
property 111
value 112

syntax 111
type conversions and 111

using 111
jsp:useBean

attributes
beanName 110
class 110
id 109
scope 110
type 110

syntax 109
using 109

JSPC compiler
classpath 134
CLASSPATH environment

variable 135
compiler specification 135
debug messages and 134
dependency checking 134
document root directory and 135
example 135
help messages 134
input JSP page 135
invoking 134
options 134

classpath 134
compiler 135
d 134
docroot 135
g 134
h 134
n 134
v 134

output file locations 134
requirements 134
See also JSP compiler

jsprt servlet 132
JspWriter class 224
JTA 40, 42
jta.jar 250, 338, 340, 360
JVM

heap size 434
default 434
modifying 434

supported versions 17

L
LDAP 40, 333, 334
lib directory 249
lifecycle 38, 41
load 283, 286
load balancing 8
loadInstance method 271, 272
loadSQL 286
local beans 334
Local cache/store 264

Local home objects 262
local.properties 23
local.properties file 162, 382, 383

Web applications
classpath 54

localhost 356
log method 194, 195
logging

architecture 380–381
components 379, 380
configuring 382–384
default configuration 378–379,

382, 383, 391, 392
dispatch logger 380, 381, 391
e-mail writer 380, 381, 394, 395
event types 379, 384, 389
example configurations 385–389
file writer 379, 380, 392, 394
instrumentation

and 420
listeners 379, 380, 389, 391
log events 383, 384
log files 393
message format 378, 384, 390, 393,

395
overview of 378–379
properties 389–??
property files 382
screen writer 380, 395
standard error and 385
standard output and 385
threaded logger 379, 380, 381, 390

login session 265, 335

M
manifest 356
MapMessage 296
Message Body 294
Message Header 294
message header fields 294
Message Properties 294
message types

BytesMessage 296
MapMessage 296
ObjectMessage 296
StreamMessage 296
TextMessage 296

MessageListener interface 293
method timing

See instrumentation
methods

applicationDestroy 445
applicationInit 445
authenticate 413

466 Developing Applications with JRun
callPage 447
Class.forName 203
coding in GenericServlet 192
coding in HttpServlet 195
destroy 171, 192, 194, 413
doAfterBody 224
doDelete 198
doEndTag 218
doGet 196
doHead 198
doInitBody 224
doOptions 198
doPost 197
doPut 198
doStartTag 218
doTrace 198
DriverManager.getConnection 20

3
findAncestorWithClass 227
forward 200
getAttribute 200, 202
getInitParameter 182, 194
getInitParameterNames 194
getLastRequestTime 448
getLoadedServletNames 447
getParameter 180
getRemoteUser 404
getRequestDispatcher 200
getResource 213
getServletConfig 194
getServletContex 194
getServletInfo 192, 193
getSession 202
getTimeLoaded 448
getUserPrincipal 405
getVariableInfo 230
include 212
init 170, 182, 192, 193, 413
isPrincipalInRole 413
isUserInRole 404
isValid 233
loadServlet 448
log 194, 195
service 170, 192, 196
sessionDestroy 445
sessionInit 445
setAttribute 200
unloadServlet 448

Microsoft’s Visual J++ 441
MIME type

JSP pages and 103
MIME types

default servlet output 178
servlet chaining by 175

monitoring 39
monitoring utilities 10
Mulitcaster 293
Multiple SQL Statements 284

N
Name

356
NESTED 230
nested (child) transactions 330
next method 277

O
object implementations 357
ObjectMessage 296
ODBC 356
onMessage method 293
OUT 289
out object 124
out of memory errors

causes 433
heap size 433

default 433
modifying 434

P
page context information 33
page directive

attributes
autoFlush 104
buffer 103
contentType 103
errorPage 104
extends 105
import 102
info 104
isErrorPage 104
isThreadSafe 104
language 102
session 103

using 102
pageContext object 124
parameters

HttpServletRequest 195
HttpServletResponse 195
initialization 181, 183, 194
JSP pages 87

accessing 88
request 180, 181
ServletRequest 192
ServletResponse 192

pass.properties file
updating 413

Path information 69

permission 339
persistence 38, 43
persistent store 279
point-to-point messaging 40, 296
pooled connection 264
port-multiplex 39
postCreate 283, 285
postCreateSQL 285
prepared statements 264, 282
presentation templates

<subst> tag 157
default.definitions file 157
default.template file 156
defintion of 156
overview 30
using in JRun 156

primary key 288
primary key class type 353
printStackTrace method 277
PrintWriter interface 33
properties 254, 280

authentication.<ServiceName>.class
415

authentication.<ServiceName>.filen
ame 415

authentication.service 414
bean properties 255, 353
container properties 254
default.properties 355
deploy.properties 356
group.groupName 416
jrun.classpath 55
monitor.class 375
monitor.format 375
monitor.interval 375
monitor.loggername 375
monitor.max.history 375
role.roleName 416
sniffer.class 437
sniffer.logcontent 437
sniffer.loggername 438
sniffer.loglevel 437
sniffer.port 437
sniffer.target.host 437
sniffer.target.port 437
timing.<ClassName>.<MethodNam

e>.calls 428
timing.<ClassName>.calls 428
timing.<ClassName>.class 428
timing.<ClassName>.methods 428
timing.<ClassName>.subclasses 4

28
timing.<LoggerName>.aftermethod

call 427

Index 467
timing.<LoggerName>.beforemeth
odcall 427

timing.<LoggerName>.class 426
timing.<LoggerName>.delimeter

427
timing.<LoggerName>.entermetho

d 427
timing.<LoggerName>.exitmethod

427
timing.<LoggerName>.level 427
timing.classes 427
timing.enabled 425
timing.excludecalls 425
timing.includecalls 425
timing.logging.class 426
user.classpath 55
user.userName 415

Properties File Overrides 256
property files 23

global.properties 23
hierarchy 23
local.properties 23
webapp.properties 23

PropertyFileAuthentication
utility 412

publish-subscribe messaging 40, 296

R
readme.txt 249
Redeploy 359
reentrant 257
Referenceable 333
relnotes.htm 249
remote 249, 251, 353
remote interface 41, 268
remote interface type 269
Remote Method Invocation 40
remote object 269
RemoteException 268, 269, 270, 277
remove 279, 283, 287
removeAutoCaller() 265
request object 125, 163
request parameters 180, 181
request uniform resource indicator

See request URI
request URI 69

application mappings 69
request/response process 32
RequestDispatcher object 200, 212,

239
resource management 38
ResourceManager 262, 264

closeStatement method 264
createAutoCaller method 265

getConnection method 264
getLocalEJBHome method 262
releaseStatement method 264
removeAutoCaller method 265

response object 126
ResultSet object 203, 277
RMI 40, 338
role bean 43
roles 354

EJB UserManager class 264
Web application authentication

and 400
run-as identity 44
run-as-mode 44
Runtime bean property overrides 258
runtime directory 251
runtime.properties 249, 251, 254, 353,

358
runtime/classes directory 359

S
samples directory 252
scalability 8
scheduling method calls 265
scripting

JSP pages and 80
scripting elements 106

declarations 107
expressions 108
scriptlets 107

scriptlets 107
security 9, 38, 39, 43

defining explicit servlet
mappings 71

EJB 354
See Web application authentication
Web applications 176

security.policy 340
SELECT 277, 286
Serializable.serialVersionUID 273
Server properties 254
server resident 39
server resources 261
Server-Side Include. See SSI
service method 170, 192, 196
Servlet API

see Java Servlet API
servlet mappings

fundamentals 68
implicit 70
usage 70

servlet path 69
servlet.jar 250
ServletConfig object 34, 194

See also config object
ServletContext object 34, 175, 194,

200, 210, 213
See also application object

ServletOutputStream interface 33
ServletRequest object 200
ServletRequest parameter 192
ServletResponse parameter 192
servlets

access via ColdFusion 450
application role information

accessing 404
benefits 27
chaining 174–175
class-scoped variables 172
compared to CGI 28
defined 6
EJB access 320
examples

cookie handling 209–210
database access 203–209
including content 212–214
passing control 200, 201
servlet context 210–212
session tracking 201–203

GenericServlet class 170, 186, 192,
194, 195

HttpServlet class 171, 186, 195
HttpServletRequest class 202
initialization parameters 181, 183
invoker servlet 62
invoking 26
invoking with SSI taglets 162
javax.servlet package 186, 187, 188
javax.servlet.http package 188,

189, 190
JRunStats 422, 425
lifecycle in JRun 169, 170, 171
object-scoped variables 172, 173
passing parameters to 162
programming tutorial 178–183
request parameters 180, 181
request-response process 26
setup and initialization 193
shutdown 194
SingleThreadModel interface 173
specification supported xviii
synchronization 171–173
threads 171, 172
Web applications

adding 61
mapping 61
registering 61

session object 33, 34, 121, 127

468 Developing Applications with JRun
See also HttpSession object
session scope 334
session tracking 9, 121, 201–203
SessionBean 272, 273
SessionContext 273
sessions 267, 292

JSP pages and 103
setAttribute method 200
setDirty method 279, 287
setEntityContext method 263, 270
setSessionContext method 263, 273
shallow compare 287
shallow identity compares 278
SHTML. See SSI
SKIP_BODY 218
sniffer mechanism

class file for 437
configuring 435

default 435
enabling 436
HTTP requests and 435
log file for 435
output 436
port number for 435, 437
properties 437
using 434

sourceDriverClassName 276
sourcePassword 276
sourceURL 276
sourceUser 276
SQL 284
SSI

<include> tag 153
<servlet> tag 152
definition of 152
local.properties file 162
overview 30
taglets

loading and using in JRun 162
mapping to servlets 162
SSIFilter 162

using in JRun 152
SSL 334
stack trace

deadlocks and 430
example of 431
obtaining

Linux 432
Solaris 432
UNIX 432
Windows 431

stand-alone 39, 339
standard extensions 338, 340
State management 38, 354

stateful_session 354
stateless_session 354
Statement 277, 278
Statement object 203
statement pooling 264
store 279, 283, 286
stored procedure calls 282, 289
storeInstance method 271, 272
StoreManager 262, 264

isStored method 271
loadInstance method 271, 272
storeInstance method 271, 272

StreamMessage 296
stubs 249, 251, 340
Sun's Forté 441
Symantec’s Visual Café 441
synchronization, scripting

variable 230
syntax

EarDeploy utility 365
jar utility 346
jrunpasswd utility 412
JSP pages 97
PropertyFileAuthentication

utility 412
WarDeploy utility 348

system 354
System.setProperty method 334

T
tag

See custom tag
tag extra information class

See TagExtraInfo class
tag handler

attribute interaction 221
body content interaction 224
example 218
looping example 226
nested tag handlers 227
overview 216
scripting variables 229, 231
See alsotag libraries

Tag interface 217
tag libraries

directory 92
JSP pages and 92, 105
JSP usage 234
location 106
overview 216
packaging 234
See also custom tags
tag prefix 106
taglib directive 105

using 92
web.xml file and 106

tag library descriptor
See TLD file

TagExtraInfo class 230
attribute definition 221
coding 230

taglets
definition of 161, 162
SSI taglets

loading and using in JRun 162
mapping to servlets 162

taglib directive 219
attributes

prefix 106
uri 106

example 217
tag library location 106
using 105

tags
<include> 153
<servlet> 152, 180
<subst> 157

TagSupport class 217, 218
technical support

contacting xxii
TEI class

See TagExtraInfo class
TextMessage 296
Third-party JDBC Drivers 339
thread 262
thread context 262
thread management

control of 172
SingleThreadModel interface 173

THTML. See presentation templates
TLD file

defining attributes 221, 223
elements 219
example 220
overview 219

topics 306
transaction management 38
transaction.begin method 331, 332
transaction.commit method 331, 332
transaction.rollback method 331, 332
TransactionRolledbackException 332
transactions 38, 42, 330
tx_bean_managed 332
tx_mandatory 330, 331
tx_required 330, 331
tx_requires_new 331
tx_supports 330

Index 469
U
UDP 292
unsetEntityContext 263, 270
UPDATE 278, 286
URL

JSP syntax for 100
URL mappings

Web applications and 53
URL pattern 70
User Authentication 43
user bean 43
user types 12
UserManager 262, 264, 273
users

EJB allowed identities 354
EJB UserManager class 264
Web application authentication

and 400
users.properties file

command line utility 412
UNIX 412
Windows 412

example 411
groups and 411
location of 411

specifying 415
passwords and 411

encrypting 412
properties

group.groupName 416
role.roleName 416
user.userName 415

roles and 411
updating 412
users and 411
Web application authentication

and 411
UserTransaction 331, 332

V
variables

global 182
object-scoped 172

Versioning 273
virtual mappings

deployment note 362
VM 339

W
War files

creating 64, 346
deploying 64
deployment through WarDeploy

utility 348

Web applications and 20, 64
Web application authentication

application authentication 401
application resources 398

access role 403
HTTP access method 403
specifying 403
URLs of 403

BASIC validation
configuring 408
error messages and 408
example 407
using 407
web.xml file and 408

class name
specifying 415

configuring 401
default 401
properties 401, 414

custom server authentication 413
example 413

default server authentication 411
configuring 411
users.properties file and 412

disabling 402
enabling 401
example 398, 402
FORM validation 408

action type 410
errors and 410
example 409
j_password 410
j_security_check 410
j_username 410
login page 409
password 410
user name 410
using 409

groups 400
defining 416
example 412

JSP pages and 404
login

error messages 399
properties 401, 414

authentication.<ServiceName>.cl
ass 415

authentication.<ServiceName>.fil
ename 415

authentication.service 414
requests and 401
resources

access role 403
HTTP access method 403

URLs of 403
role links 406
roles 398, 400

assigning 402
defining 416
example 412
role links 406

server authentication 401, 410
configuring 410
custom 413
default 411
third-party 414

service name 414
servlets and 404
third-party server

authentication 414
URL patterns

specifying 403
users 400

defining 415
example 412
passwords for 412, 415

users.properties file
command line utility 412
example 411
groups and 411
location of 411, 415
passwords and 411
properties 415
roles and 411
updating 412
users and 411

validation method
BASIC 407
FORM 408
setting 407

web.xml file and 403
Web applications 15

adding components to 59
directories 60
EJBs 63
HTML files 60
JSP pages 60
servlets 61
tag libraries 63

application root directory 20
authentication and 397
benefits 48
class sharing 55

directories for 55
nonreloadable 55

classpath 54
default 54
modifying 54

470 Developing Applications with JRun
nonreloadable 54
reloadable 54

components 52
adding 59

creating 58
default 68
default JRun server and 52
default Web application 56

characteristics 56
classpath 58
default JRun server and 57
directory structure 58
motivation for 57
requests to 57
root directory of 56, 58
URL mapping 56
using 57

defined 6
definition of 175
deploying 64
deploying through JMC 348
deployment 345
deployment descriptor 19, 51
developing 58
directory structure 20, 50
distributed 56
error handling 175
invoker servlet 62
J2EE applications and 7
Java Servlet API spec and 19
JRun servers and 49
packaging 64
portability 19
root directory 50
security 176
servlets

mapping 61
registering 61

session tracking 201–203
temp directory 51
URL mappings 53
using 49
war file 20
web.xml file 51
web.xml file and 19
WEB-INF directory 50

classes 50
jsp 51
lib 50

Web server connection monitoring
configuring 371

default 371
enabling 370
output 371

configuring 371
default format 373
format 371
predefined formats 373

properties 375
statistics 370

Web servers 14
bind address 18
connecting to JRun 18
interaction 72
JRun and 18
JRun connectors and 8
JRun servers and 14
network port 18
request processing 18

web.xml file
authentication and

example 403
elements

<auth-constraint> 403
<auth-method> 408
<form-error-page> 409
<form-login-config> 409
<form-login-page> 409
<role-link> 406
<role-name> 403
<security-constraint> 404
<security-role-ref> 405
<url-pattern> 403
<web-resource-collection> 404

HTTP error messages and 440
Java exceptions and 440
tag libraries and 106
taglib element 235
Web application authentication

and 403
Web applications and 19

webapp.properties file 23
classpath 54

X
X/Open 330
XA specification 330

	Welcome To JRun
	Contents
	Product Features
	JRun Product Variations
	Intended Audience
	Developer Resources
	About JRun Documentation
	Online documentation
	Documentation conventions

	Other Resources
	Books
	Online Resources

	Contacting Allaire
	Corporate headquarters
	Technical support
	Sales

	Introduction
	Contents
	Introduction to JRun
	Contents
	Introducing JRun
	The Benefits of server-side Java
	The Benefits of using Java

	The JRun Architecture Model
	JRun’s support for the three-tier model

	JRun Features
	Plug-in connection to Web servers
	Scalability
	Security
	Session tracking
	Monitoring utilities
	Development tools
	JRun Studio
	JRun Management Console

	Where to next?

	The JRun Programming Model
	Contents
	JRun Programming Environment
	JRun Servers
	The installed JRun servers
	Using a Java Virtual Machine with a JRun server

	Web Servers
	The JRun Web server

	Web Applications
	Enterprise JavaBeans
	Java Message Service
	Configuring JRun
	Using the JMC
	Using property files

	Using Servlets
	Contents
	Using Java Servlets
	Invoking servlets
	Servlet benefits
	The benefits of using servlets
	The benefits of using Java

	Servlets vs. CGI
	Creating servlets
	JRun support for servlets

	Server-Side Scripting with JRun
	Types of server-side scripts
	JRun features for server-side scripts

	Servlets and JSP Pages
	HTTP requests and responses
	Writing results back to the client
	Handling exceptions
	Maintaining page context information
	Working with sessions
	Tracking an application’s context
	Accessing configuration information
	Deploying an application

	Writing Servlets in Java
	Writing Servlets as JSP Pages

	Introduction to EJB
	Contents
	Overview
	APIs
	Services
	Bean Development
	Lifecycle
	Context
	Transactions
	Persistence
	Messaging Support
	Security and Authentication
	User Authentication
	Access Control
	Overriding Identity

	Environment
	Installation Requirements
	Directory Information

	Developing Web Applications
	Contents
	Introduction to Web Applications
	The Benefits of Web applications
	Using Web applications
	Web application directory structure
	Deployment descriptor (web.xml)
	Application components
	Web applications, JRun servers, and Web servers
	Application mappings

	Determining the Web application classpath
	Modifying a Web application’s classpath

	Sharing classes between Web applications
	Distributed Web applications

	Using the Default Web Application
	Handling a request to the default Web application
	Using the default-app Web application
	Default application directory structure
	Default Web application classpath

	Developing Web Applications
	Creating a Web application
	Adding Web application components
	Adding directories
	Adding HTML pages
	Adding JSP pages
	Adding Java servlets
	Using the invoker servlet
	Adding tag libraries
	Adding EJBs
	Adding additional resources

	Deploying Web Applications
	Packaging an application for deployment
	Deploying a Web application within JRun

	How JRun Maps Requests to Servlets
	Contents
	Servlet Mapping Fundamentals
	Mappings
	Application mappings
	Servlet mappings
	Using the invoker servlet

	How JRun Serves Files
	Web server interaction
	Scenarios
	Single default Web application
	Multiple Web applications in a JRun server

	Server-Side Scripting and JSP
	Contents
	Creating JSP Pages
	Contents
	Writing JavaServer Pages
	Introduction to JSP scripting
	Creating your first JSP page
	Multiple HTML/Java blocks
	From JSP to Java to servlets

	Developing JSP Files
	Storing JSP pages
	Declaring variables
	Adding conditional logic to JSP pages
	Using expressions
	Using JSP objects
	Using parameters and attributes with JSP objects
	Performing an include
	Calling another JSP page
	Buffering JSP output
	Using a tag library
	Creating a tag library

	Handling errors
	Translation Errors
	Request Processing Errors

	Using the JSP compilers

	Upgrading from a Previous Release of JSP

	JSP Syntax
	Contents
	JRun Compatibility with the JSP 1.1 Specification
	Basic JSP Syntax
	Inserting JSP template text
	Using white space
	Placing start and end tags
	Quoting attribute values
	Escaping characters
	Inserting comments
	Writing comments for the JSP
	Outputting comments to the client

	Specifying a relative URL within a JSP

	Directives
	The page directive
	The include directive
	The taglib directive

	Scripting Elements
	Declarations
	Scriptlets
	Expressions

	Actions
	jsp:useBean
	jsp:setProperty
	jsp:getProperty
	jsp:include
	jsp:forward
	jsp:param
	jsp:plugin

	JSP Page Object Reference
	Contents
	JSP Objects
	Obtaining access to the JSP objects
	Using the JSP objects

	The application Object
	Syntax

	The config Object
	Syntax

	The exception Object
	Syntax

	The out Object
	Syntax

	The pageContext Object
	Syntax

	The request Object
	Syntax

	The response Object
	Syntax

	The session Object
	Syntax

	JSP Compilation
	Contents
	The JSP Compiler
	Setting JSP compiler properties
	Bypassing JSP page compilation
	The JSP compilation process
	Automatically bypassing JSP page compilation
	Disabling JSP page compilation
	Reenabling JSP page compilation

	The JSPC Compiler
	JSPC compiler requirements
	Invoking the JSPC compiler
	JSPC compiler examples

	JSP Examples
	Contents
	Handling a Request and Generating a Response
	Calling One JSP from Another
	Tracking a Session
	Using the Application Object
	Using a Tag Library

	Upgrading JSP Pages
	Contents
	Upgrading from a Previous Release
	Upgrading from Version 1.1 PR1
	Changes to the specification

	Upgrading from Version 1.1 PD1
	Additions to the specification
	Changes to the specification
	Deletions to the specification

	Upgrading from Version 1.0
	Additions to the specification
	Changes to the specification

	Upgrading from Version 0.92
	Changes to the Specification
	Removals from the specification
	Additions to the specification

	Using Server-Side Include Files
	Contents
	Using Server-Side Includes (SHTML Files)
	Servlet Tag
	Include Tag
	Using the virtual keyword
	Using the file keyword

	Presentation Templates
	Contents
	Using Presentation Templates (THTML Files)
	Using default.template
	Using default.definitions
	File Locations

	Taglets
	Contents
	What Are Taglets?
	SSI taglets

	Loading and Using SSI Taglets

	Developing Servlets
	Contents
	Working with Java Servlets
	Contents
	About Servlets
	The Java Servlet API Version 2.2
	Basic Servlet Classes and Interfaces
	The Servlet Lifecycle
	Synchronization
	Using the synchronized keyword in the method signature
	Using synchronized code
	Using the SingleThreadModel interface
	Synchronizing the methods that access an object-scoped variable

	Servlet Chaining
	Enabling explicit servlet chaining
	Enabling servlet chaining by MIME type

	Web Applications

	Servlet Tutorial
	Contents
	Part�1
	Part�2
	Part�3

	Servlet API Basics
	Contents
	Types of Java Servlets
	Servlet API Packages
	javax.servlet
	javax.servlet interfaces
	javax.servlet classes
	javax.servlet exceptions

	javax.servlet.http
	javax.servlet.http interfaces
	javax.servlet.http classes

	Servlet API Reference Information

	Programming with the Java Servlet API
	Contents
	Coding Methods in the GenericServlet Class
	Overriding the service method
	Overriding the getServletInfo, init, and destroy methods
	Coding the getServletInfo method
	Coding the init method
	Coding the destroy method

	Accessing servlet, request, and application information
	Using initialization parameters
	Logging messages

	Coding Methods in the HttpServlet Class
	Overriding the service method
	Overriding the doGet method
	Overriding the doPost method
	Overriding other HTTP methods

	Servlet Examples
	Contents
	Passing Control
	Passing control to another servlet
	Passing control to a JSP page

	Tracking a Session
	Accessing a Database
	Using the JDBC-ODBC Bridge
	Using a JDBC driver
	Using the JRun data source service

	Handling Cookies
	Using the Servlet Context
	Including Content from Other Files
	Using the include method
	Using the getResource method

	Creating Custom Tags and Tag Libraries
	Contents
	About Custom Tags and Tag Libraries
	Coding Tag Libraries
	Classes and interfaces
	How JSP developers use custom tags
	Coding a simple tag handler
	Creating a TLD file
	Defining tags in a TLD file
	Example TLD file
	Invoking a simple custom tag

	Interacting with attributes
	Defining attributes in a TLD file
	Coding attributes in a JSP page

	Interacting with body content
	Simple example
	Looping example

	Coding nested tag handlers
	Using a tag to create a scripting variable
	Coding a TEI class
	Enabling scripting variables in a tag handler
	Using a scripting variable in a JSP page
	Using the isValid method

	Using Tags in JSP Pages
	Packaging Tag Libraries

	Servlet API Changes
	Contents
	Servlet API Changes from 2.0 to 2.1
	API refinements
	Changes in the log method
	ServletRequest.getRealPath has been deprecated
	URL case consistency
	Overriding the init method
	New getSession method
	Setting a status code
	Default getParameter behavior
	No access to servlet references
	No access to other sessions

	Enhanced functionality
	Request dispatching
	Accessing resources
	Nested exceptions
	Sharing attributes through ServletContext
	Controlling session timeout
	Accessing version information

	Servlet API Changes from 2.1 to 2.2
	API refinements
	Enhanced request dispatching
	Enhanced redirection

	Web applications
	WAR files
	The WEB-INF directory
	One ServletContext per Web application

	Other enhanced functionality
	Response buffering
	Support for multiple header values
	Temporary directory support
	Accessing a servlet’s name
	Internationalization
	Security

	Developing Enterprise JavaBeans
	Contents
	Directories for EJB
	Contents
	Structure
	JRun Home
	server/servername/deploy
	docs
	lib
	lib/ext
	server/servername/runtime
	server/servername/runtime/classes
	samples

	Properties
	Contents
	Overview
	Setting Server Properties
	Setting Container Properties
	Setting Bean Properties
	Examples
	Command Line Overrides
	Properties File Overrides
	Bean Property Overrides
	Runtime Bean Property Overrides

	Summary

	Resource Management
	Contents
	Overview
	Local Home Objects
	Instance Manager
	Context / Bean Instance Pools
	Instance State Changes

	Database Connection Management
	Local Cache / Store
	Loaded Users and Roles
	AutoCall Methods

	Developing Beans
	Contents
	Overview
	Writing the Bean’s Remote Interface
	Writing the Bean’s Home Interface
	Writing the Bean’s Class Implementation
	Entity Beans
	Session Beans

	Versioning
	Summary

	Bean Managed Persistence
	Contents
	Overview
	Data Source Properties
	Bean Methods
	Create and Post Create
	Load
	Store
	Remove

	JRun instance.store
	Properties
	Samples

	Container Managed Persistence
	Contents
	Overview
	Properties
	Multiple SQL Statements
	Bean Methods
	Create and Post Create
	Store
	Remove
	Finders
	findByPrimaryKey

	Stored Procedure Calls
	Developer Responsibilities With CMP
	CMP Summary

	Java Messaging
	Contents
	Overview
	JRun messaging architecture

	Message Components
	Message header fields
	Message properties
	Message body types

	Message Types
	Point-to-Point
	Coding the sender
	Coding the receiver

	Publish-Subscribe
	Coding the publisher
	Coding the subscriber

	Using Servlets to Access EJBs
	Contents
	Overview
	Accessing EJBs through JRun
	Login servlet
	EJB access servlet

	Advanced Techniques
	Contents
	Overview
	Transactions
	Setting Transaction Attributes
	Implicit Transaction Management
	Rollback

	Bean and Client Transaction Management
	Client Demarcated Transactions
	Bean Managed Transactions
	Rollback

	Deadlocks
	Disabling Security
	Context Factories
	SSL

	Local Beans
	Client Applications
	Session Scope
	Client Connection Definition
	Limited Connections

	Using the EJB Engine
	Contents
	Overview
	Class Loading
	Classpath
	Running the EJB engine in stand-alone mode
	Using Third-party JDBC Drivers
	Troubleshooting Your Setup
	Permissions
	Standard Extensions
	Server Classpath
	Client Setup

	Deploying Applications
	Contents
	Assembling and Deploying Web Applications
	Contents
	Overview of Application Assembly and Deployment
	What is Web application assembly
	What is Web application deployment?
	WAR files

	Packaging Web Applications for Deployment
	Disabling JSP page compilation
	Creating a .war file

	Deploying Web Applications
	Using the JMC
	Using the command line interface
	Syntax
	Property file format

	Defining users and roles for authentication

	Deploying Enterprise JavaBeans
	Contents
	Overview
	Supplying The Properties
	Bean properties
	Naming beans
	Home name
	State management
	Allowed identities
	Object timeout
	Deployment descriptor

	Default properties
	Manifest
	Deploy properties

	Creating The Jar Files
	Running the Deploy Tool
	Redeploy

	Including Additional Classes
	Using Dynamic Bean Loading
	The Runtime Environment
	Server environment
	Client environment

	Deploying J2EE Applications
	Contents
	Overview
	What is J2EE application deployment?
	EAR files
	Packaging J2EE Applications for Deployment
	Creating an application.xml file
	Creating an .ear file

	Deploying J2EE Applications
	Using the JMC
	Using the command line interface
	Syntax

	Defining users and roles for security

	Working with JRun
	Contents
	Monitoring Web Server Connections
	Contents
	Monitoring the Web Server Connection
	Configuring the monitoring mechanism
	Configuring the monitoring output format
	Default monitoring formats

	Monitoring Properties

	Logging
	Contents
	Logging
	Logging components
	Logging architecture
	Configuring the JRun logging mechanism
	Editing property files
	Default configuration

	Types of log events
	Log information format
	Logging output to standard output and standard error

	Examples
	Using multiple file writers
	Writing a log message to an e-mail message

	Logging Properties
	General properties
	Threaded logger properties
	Dispatch logger properties
	File writer properties
	E-mail writer properties
	Screen writer properties
	System logging properties

	Web Application Authentication
	Contents
	Authentication
	Authentication example
	Users, groups, and roles
	Application authentication vs. server authentication
	When does a server perform authentication?
	Configuring the JRun authentication mechanism

	Setting Application Authentication
	Assigning authentication roles to Web applications
	Accessing role information from servlets

	Setting the user validation method
	BASIC validation
	FORM validation

	Controlling the Server Authentication Mechanism
	Using the default JRun authentication mechanism
	Using a custom authentication mechanism with JRun
	Executing applications outside of JRun

	Authentication Properties
	Properties in local.properties
	Properties in users.properties

	JRun Instrumentation
	Contents
	Using the Instrumentation Mechanism
	Example
	Message format
	Using logging with instrumentation
	Configuring
	Writing instrumentation information back to the client.
	Writing timing messages to its own file

	Instrumenting JSP files

	Instrumentation Properties
	General properties
	Logging properties
	Class and method properties

	Debugging and Error Messaging
	Contents
	Debugging
	Starting a debugger with JRun
	Obtaining a stack trace
	Windows stack trace
	UNIX/Solaris stack trace
	Linux

	Handling a core dump (UNIX systems only)
	Handling an out of memory error
	Monitoring client/server communication
	Configuring the sniffer mechanism
	Sniffer mechanism output
	Sniffer mechanism properties

	Additional debugging links

	Custom Error Messaging
	Changing the default error message with connectors
	Setting HTTP error pages using web.xml
	Controlling Java exception messages using web.xml

	Using JRun with a Third-Party IDE

	JRun Extensions
	Contents
	Using JRun Extensions
	Using the global.jsa file
	Example global.jsa file
	Enabling the global.jsa file

	Extensions to the Servlet API
	The class com.allaire.jrun.servlet.JRunServletResponse
	JRunServletContext object
	Methods

	Using JRun with ColdFusion
	Contents
	JRun and ColdFusion
	Using CFSERVLET
	Calling a Servlet from a CFML Template
	Calling a Servlet that has Parameters and Attributes

	Using CFOBJECT
	Deploy the EJB
	Define Java settings in the ColdFusion Administrator
	Code a CFML file

